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To understand the nature of the evolutionary process, it is of paramount importance that temporal patterns of
change in biological traits are accurately documented. The paleontological record is, however, inherently
incomplete, leaving researchers with only a limited set of observed taxonomic units (OTUs) to estimate broader
patterns of biological change. In this context, phylogenetic comparative methods have been developed aiming to
estimate patterns of phenotypic change through time based on a phylogenetic tree and a limited set of OTUs.
Such methods typically employ mathematical models proposing how change is likely to have unfolded over time.
The most commonly used model, Brownian motion (BM), assumes that average trait change is proportional to the
square root of time and that the rate of evolution is stochastically constant across all branches. This, however,
lies in contrast to the commonly agreed notion that many biological traits change at different rates along
different branches of the tree of life. We present a method for inferring ancestral states that allows for different
evolutionary rates along different branches of the phylogenetic tree. The goal is to include the effects of variation
in rates of phenotypic change across phylogenetic space. Based on the available phenotypic and phylogenetic
information, we estimate measures of the rate of evolution on each individual branch and, subsequently, these
estimates are used to parameterize a multiple variance BM model inferring the phenotypic values at all internal
nodes. We demonstrate the validity of our approach with a series of simulations and an empirical example. We
show that values for internal nodes inferred using our approach are equivalent to those inferred with a constant
variance BM model if phenotypic evolution occurs according to standard BM. When evolution occurs at different
rates along different branches of the phylogeny, our approach greatly outperforms constant variance BM. We
further demonstrate that our approach accurately detects bursts of change in phylogenetic space. An empirical
analysis of the evolution of primate brain and body mass reveals that our approach yields an improved statistical
fit relative to both traditional and recent methods, and provides estimates of nodal values that lie within a range
expected based on the fossil record. © 2016 The Linnean Society of London, Biological Journal of the Linnean
Society, 2016, 118, 78–94.
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INTRODUCTION

Phylogenetic comparative methods comprise a set of
statistical approaches used to analyze phylogenetic
trees, often in association with trait data. The gen-
eral aim of many modern phylogenetic comparative
methods is to clarify how evolution has shaped
biodiversity through time (O’Meara, 2012; Pennell &
Harmon, 2013). Common applications include testing

for correlated evolution between traits (Felsenstein,
1985; Grafen, 1989), testing hypotheses about the
tempo and mode of evolution of morphological traits
(Butler & King, 2004; O’Meara et al., 2006), and the
study of the dynamics of clade diversification
(Rabosky & Crandall, 2006).

In recent years, a wide variety of methods aiming
to understand the tempo and mode of trait evolution
have been developed. Such methods treat the phy-
logeny as a historical framework that can be used to
model trait change along its branches. These meth-*Corresponding author. E-mail: jeroen.smaers@stonybrook.edu
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ods commonly use models of evolution dictating how
to map trait variation in observed taxonomic units
onto the branches of the phylogeny. Despite an
apparent trend toward model diversification, recent
developments can largely be understood as expan-
sions of two standard models: Brownian motion
(BM) and Ornstein–Uhlenbeck (OU). The standard
BM model assumes that average trait change is pro-
portional to the square root of time and that the
rate of evolution is stochastically constant such that
it has a single mean and variance across all
branches. Expansions of the BM model include the
development of multi-rate BM models using reversi-
ble-jump Markov chain Monte Carlo (MCMC) proce-
dures to estimate how rates vary across the tree or
to test specific hypotheses about where rate shifts
occur (O’Meara et al., 2006; Eastman et al., 2011;
Venditti, Meade & Pagel, 2011; Revell et al., 2012).
Specifically, Venditti et al. (2011) introduced an
approach that can be used for the estimation of both
variable rates and ancestral states (for implementa-
tion, see Pagel & Meade, 2013). OU models allow
for a departure from the unconstrained random
walk of BM such that traits, in addition to evolving
with a random walk component, tend to be pulled
towards some optimum value (h) by the strength of
a restraining force (a). Expansions of the OU frame-
work include ‘multi-regime’ methods that allow the
OU parameters to vary across the tree (Butler &
King, 2004; Beaulieu et al., 2012; Ingram & Mahler,
2013; Uyeda & Harmon, 2014). Such ‘multi-regime’
OU models are particularly useful when selecting
among alternative model parameterizations (where
each parameterization characterizes a different evo-
lutionary scenario describing the structure of the
adaptive landscape through time).

The interpretation of what precisely is explained
by the application of these methods is, however, not
as straightforward as it may seem. Often, phyloge-
netic comparative methods are used to test or
describe patterns of evolution that align with biologi-
cal concepts such as ‘adaptive radiations’ and ‘key
innovations’. However, the way that BM and OU
model parameters are linked with such biological
concepts is not always clear (Pennell & Harmon,
2013; Pennell, 2015; Pyron, 2015). Moreover, statisti-
cal models may not adequately capture the historical
patterns of trait change that we are interested in
(Harmon et al., 2010; Pennell et al., 2015). The cen-
tral assumption of standard BM that trait change is
proportional to the square root of time and constant
along all branches has long been considered to be
incompatible with how most traits evolve (Harvey &
Purvis, 1991). The central OU assumption of clade-
wide stabilizing selection may be equally unrealistic
for many traits (Pennell, 2015).

The dominant use of BM and OU based models
was proposed to stem from their ability to provide a
balanced compromise between three fundamental
features (Pennell, 2015): (1) their usefulness for
detecting patterns of change through time; (2) their
interpretative value in terms of formal processes of
evolutionary population genetics; and (3) their being
at least loosely tied to biological concepts. It is for
these reasons that recent expansions of the two core
models undeniably represent a significant advance-
ment in the field of phylogenetic comparative meth-
ods. The issue remains, however, that those
parameters only loosely tied to the biological pro-
cesses they purport to model may fail to capture the
evolutionary features of greatest interest (Pyron,
2015). Moreover, much more work is needed to
increase the link between macroevolutionary param-
eters and microevolutionary processes (Pennell &
Harmon, 2013).

Looking at this from another perspective, it can be
argued that phylogenetic comparative applications
measure patterns of trait change over time, irrespec-
tive of any microevolutionary processes underlying
the change (Pennell, 2015). The primary aim of the
present study is to document patterns of change and
the putative commonalities and differences among
taxa that they reveal, rather than to make inferences
about specific evolutionary processes. The adoption
of this position opens the possibility of using a wider
array of models primarily aimed at providing a bet-
ter fit to the data. As Pennell (2015) points out, such
approaches may be derived from macroevolutionary
diffusion processes (Clauset & Erwin, 2008), macroe-
cological theories or statistical learning approaches.

Below, we present a method for inferring pheno-
typic values for internal nodes that aims to incorpo-
rate potential variation in the rate of phenotypic
change along different branches of a phylogenetic
tree. Our approach differs from standard models
such as BM in that it estimates branch-specific rates
of evolution in a deterministic manner from the
available phenotypic and phylogenetic information.
The estimated evolutionary rates are subsequently
used to parameterize a multiple variance BM
(mvBM) model. Based on this model of evolution, we
apply a Bayesian MCMC procedure to stochastically
infer the phenotypic values for all internal nodes.
The method is partly based on work by Smaers &
Vinicius (2009) in that it aims to capture branch-spe-
cific change by triangulating between a predicted
value of an internal node (comprised of a weighted
mean, with weights a function of the patristic dis-
tance of the node in question to the OTUs) and the
values of its two descendants.

The currently described method can be considered
as one possibility within a larger framework of
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mvBM estimation. Different estimation procedures of
the deterministic rate (see Methods) can be conceived
and it is plausible that different procedures may pro-
vide a better fit for different datasets. To highlight
how the estimation procedure may be modified, we
describe one possible alternative modification when
evaluating the accuracy of our approach in the con-
text of the evolution of primate brain and body mass.

The accuracy of the proposed mvBM approach is
evaluated using a series of simulations and an
empirical example analyzing the evolution of primate
brain and body mass. In the latter evaluation, the
accuracy of mvBM is compared with traditional
methods of ancestral estimation (Pagel, 1997, 1999),
as well as recent approaches that infer both variable
rates and ancestral states (Venditti et al., 2011).
Methods based on OU models are not considered
because their current formalizations aim to describe
the structure of the macroevolutionary landscape,
rather than ancestral states and rates for particular
nodes/branches in the tree.

METHODS

We assume a phylogenetic tree, φ, characterized by n
tips, describing the genetically inferred evolutionary
history of the n species at the tips. The sequence
{i}i = 1, . . ., 2(n � 1) denotes the node labels of the con-
sidered tree and the first n labels describe the nodes
at the tips. Further, the matrix [bij]ij = 1, . . ., 2(n � 1)

describes the patristic distances among all nodes and
tips of φ. If node j is a direct descendant of node i
then bij = (= bji) stands for the branch length
between the nodes i and j. It holds that bii = 0 for all
i = 1, . . ., 2(n � 1).

The values of the considered continuous pheno-
typic trait of the n species at the tips are described
by the vector X = [x1, x2, . . ., xn]. The expected phylo-
genetic covariances for the tree are:

V ¼
t1 t12 . . . t1n
t21 t2 . . . t2n
..
. . .

. ..
.

tn1 tn2 . . . tn

2
6664

3
7775

where tij describes the shared time of evolution of
species i and j, and ti is the total time of evolution of
species i.

CONSTANT VARIANCE BM MODEL

Under a constant variance BM model, the joint dis-
tribution of X is given by the multivariate normal
distribution:

PðX; l;r2Þ ¼ 1

ð2pr2Þn2
jVj�1

2exp

ð� 1

2r2
ðX � l1ÞTV�1ðX � l1ÞÞ

where the parameters l and r2 describe the value of
the root and the variance of the BM, respectively
and 1 = [1,1, . . . 1]. The corresponding log-likelihood
function (Felsenstein, 1973) is given by:

lnLðX; l;r2Þ ¼ � n

2
lnð2pr2Þ � 1

2
lnjVj�

1

2r2
ðX � l1ÞTV�1ðX � l1Þ:

ð1Þ

Based on the log-likelihood function (1), we per-
form a Bayesian MCMC analysis (Revell, 2012). The
outcome of this analysis are posterior distributions of
the variances r2 of the BM model, as well as of the
trait values of all internal nodes.

MVBM MODEL

Our aim is to relax the assumption that phenotypic
evolution occurs at the same rate on each branch of
the given phylogenetic tree φ. Accordingly, we
develop a method consisting of a deterministic esti-
mation procedure and a stochastic BM inference
framework. Although the deterministic part provides
estimations of measures of the rate of evolution on
each individual branch based on the given pheno-
typic and phylogenetic information, the stochastic
part uses these estimations to parameterize a mvBM
model. Below, we detail the suggested methodology.

Deterministic estimation part
In a first step, we generate estimations of the pheno-
typic trait values of the n � 1 internal nodes. Two
extreme approaches could be conceived to attain this
goal. One approach assumes that the incorporation
of all phylogenetic and phenotypic information pro-
vides an appropriate estimate of the value of an
internal node. This approach would combine all
available ‘global’ information from across the phy-
logeny into an estimate of the value of each internal
node. A second approach assumes that nodal values
can be calculated without taking tree structure into
account but, instead, leveraging information from its
closest relatives. Here, we propose to combine both
approaches to leverage the ‘global’ estimate with ‘lo-
cal’ information.

Our proposed ‘global’ estimate comprises a
weighted mean based on φ and the trait values of
the tips. We calculate the estimates of the values for
each internal node under the assumption that the

© 2016 The Linnean Society of London, Biological Journal of the Linnean Society, 2016, 118, 78–94

80 J. B. SMAERS ET AL.



leverage of each tip value on the estimated value of
each internal node is a function of their phylogenetic
distance. In detail, the weighted mean of node k,
denoted by Pk, is determined by

Pk ¼
Pn

i¼1
xi
b2
ikPn

i¼1
1
b2
ik

; k ¼ nþ 1; . . .; 2ðn� 1Þ: ð2Þ

where bik describes the patristic distance between
the tip value i and internal node k. Utilization of
the squared patristic distance results in a larger
influence of tip values phylogenetically close to
node k.

Our proposed ‘local’ estimate of the value of node
k, denoted by pk, is the average of the values xn1ðkÞ
and xn2ðkÞ, representing the values of the two descen-
dants, n1(k) and n2(k) of node k:

pk ¼ xn1ðkÞ þ xn2ðkÞ
2

; k ¼ nþ 1; . . .; 2ðn� 1Þ: ð3Þ

Based on the global and local estimates given by
eqns (2) and (3), the phenotypic trait value of the
internal node k is given by:

xk ¼ aPk þ ð1� aÞpk ¼ a

Pn
i¼1

xi
b2
ikPn

i¼1
1
b2
ik

þ ð1� aÞ xn1ðkÞ þ xn2ðkÞ
2

;

k ¼ nþ 1; . . .;2ðn� 1Þ: ð4Þ

The coefficient a controls the importance of local
and global information. Equation (4) thus provides
estimates of the values of the internal nodes k,
k = n + 1, . . .,2(n � 1) leveraging both global and
local information. In the following, we use a = ⅓,
which corresponds to triangulating Pk with xn1ðkÞ and
xn2ðkÞ (Fig. 1), and obtain:

xk ¼ Pk þ xn1ðkÞ þ xn2ðkÞ
3

; k ¼ nþ 1; . . .; 2ðn� 1Þ: ð5Þ

Based on these estimates of the nodal values, we are
able to calculate measures of the rate of evolution for
each branch of the tree. In particular, we calculate:

r2
kn1ðkÞ ¼

ðxn1ðkÞ � xkÞ2
bkn1ðkÞ

and r2
kn2ðkÞ ¼

ðxn1ðkÞ � xkÞ2
bkn2ðkÞ

:

ð6Þ

As before, xk represents the value of node k, xn1ðkÞ,
xn2ðkÞ represents the values of its two descendants
n1(k) and n2(k), and bkn1ðkÞ and bkn2ðkÞ represent the
corresponding branch lengths.

Summarizing, the deterministic part of our frame-
work provides estimates of the values of all internal
nodes and of measures of the rate of evolution
fr2

kniðkÞgk¼nþ1;...;2ðn�1Þ;i¼1;2 on each individual branch
based on the given phenotypic and phylogenetic
information. We also note that the functional rela-
tionships (2), (3), and (4) used for estimating the
nodal values can be modified if this is more appropri-
ate for a specific application. A three-taxon worked
example of the deterministic estimations described
here is provided in the Supporting information (Data
S1).

However, point estimates as given by eqns (5) and
(6) are of limited use for inference purposes because
the stochastic nature of the evolutionary process is
neglected. To include uncertainty, we develop, in the
second step, a mVBM framework and use the
obtained point estimates as input parameters to a
BM Bayesian MCMC procedure.

Stochastic inference part
We assume that phenotypic evolution occurs accord-
ing to BM but allow the variances of the BM process
to vary across branches. In particular, we assume
that the respective variances are given by the esti-
mates fr2

kniðkÞgk¼nþ1;...;2ðn�1Þ;i¼1;2 determined in eqn (6).
Our aim is to infer the values of the internal nodes
under the mvBM model of phenotypic evolution.

To apply the same standard Bayesian MCMC pro-
cedure as that for the constant variance BM model
but still include different rates of evolution, the
branch lengths of the given tree φ need to be trans-
formed appropriately. According to our model
assumption, the BM process describing the pheno-

PkXn1(k)

Xk

Xn2(k)

Figure 1. Illustration of equation (5), assuming bXn1ðkÞ ¼
bXn2ðkÞ ¼ b.
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typic evolution from node k to its descendants n1(k)
possesses the variance r2

kn1ðkÞ [given by eqn (6)] and
the BM process between node n2(k) possesses the
variance r2

kn2ðkÞ.
Basic BM theory states that the distribution of the

BM process (starting at value x) with variance r2

after time t is given by a normal distribution with
mean x and variance r2t. Therefore, the same distri-
butions of phenotypic values at the nodes n1(k) and
n2(k) can be achieved by assuming a constant vari-
ance �r2 but adjusting the time of evolution accord-
ingly. In detail, the BM processes with variances
r2
kniðkÞ and �r2 generate the same distribution at times

bkniðkÞ and bkniðkÞ, respectively, if it holds

r2
kniðkÞbkniðkÞ ¼ �r2bkniðkÞ; i ¼ 1; 2

Consequently, we define the branch lengths of the
transformed tree û by

bkniðkÞ ¼
r2
kniðkÞ
�r2

bkn1ðkÞ ¼
ðxniðkÞ � xkÞ2

�r2
; i ¼ 1; 2:

where �r2 is a constant (here proposed as the mean
of the posterior distribution of inferred r2 values
from a constant variance BM MCMC procedure
based on φ and X). In this way, we ensure that the
distributions of the nodal values obtained by assum-
ing a BM process along the original tree φ with the
variances fr2

kniðkÞgk¼nþ1;...;2ðn�1Þ;i¼1;2 at each branch
coincide with the distributions obtained by assuming
a BM process along the transformed tree û with con-
stant variance �r2 at each branch. In other words,
bkniðkÞ describes the expected branch length if a BM
process with variance �r2 is considered to have pro-
duced the observed squared trait change
ðxniðkÞ � xkÞ2. Naturally, if trait changes are very
small, the branch length is equally small. Although
this is biologically plausible, this is statistically
undesirable. To avoid this situation, we propose to
lengthen branches (alternative branch lengthening
procedures can be conceived; one possible such alter-
native is described and analyzed in the section
‘Empirical example’) as:

b̂kniðkÞ ¼ bkniðkÞ þ bkniðkÞ: ð7Þ

Based on the transformed phylogenetic tree û with
branch lengths fb̂kn1ðkÞgk¼nþ1;...;2ðn�1Þ, we perform, in
the last step, the same Bayesian MCMC analysis as
for the constant variance BM model.

The outcomes of this analysis are samples of the
variance of the constant variance BM model, denoted

by fr̂2
j gj¼1;...;N , where N stands for the number of

generations sampled by the MCMC algorithm, as
well as the trait values of all internal nodes under a
multiple variance BM model of phenotypic evolution.

The corresponding samples of evolutionary rates
for each branch of the given phylogenetic tree φ are
determined by:

r̂2
kn1;j

¼ r̂2
j

b̂kn1ðkÞ
bkn1ðkÞ

¼ r̂2
j 1þ bkn1ðkÞ

bk1ðkÞ

� �
and r̂2

kn2;j

¼ r̂2
j

b̂kn2ðkÞ
bkn2ðkÞ

¼ r̂2
j 1þ bk2ðkÞ

bk2ðkÞ

� �

for k = n + 1, . . ., 2(n � 1) and j = 1, . . . N.
The implementation of these algorithms is avail-

able in the R package ‘evomap’ (Smaers, 2014),
under the function ‘mvBM’.

SIMULATION EXAMPLE

To systematically explore the properties of the pro-
posed mvBM method, we compare its performance
with the performance of a constant variance BM
method (cvBM) in situations where phenotypic evolu-
tion follows and deviates from a standard BM model.
The cvBM method used is ‘anc.Bayes’, as described
by Revell (2012), which takes a phylogenetic tree
and a vector of terminal states for a continuously
valued character and uses Bayesian MCMC to sam-
ple from the posterior distribution for the character
states at ancestral nodes in the tree. The mvBM
method is implemented in the same way but uses
the transformed tree û with the branch lengths
given in eqn (7) as input tree rather than φ.

We start by analyzing the accuracy of mvBM (and
cvBM) within a simulation framework but subse-
quently consider an empirical example as well. The
simulation framework provides the advantage of pos-
sessing full knowledge of the underlying evolutionary
process that has generated the phenotypic data at
the tips of the given phylogenetic tree. This allows
us to compare the inferred the ancestral states and
rates of evolution with the known true values. In
detail, for each simulation run, we generate stochas-
tic pure-birth trees (Revell, 2012) and simulate val-
ues of a continuous trait at all nodes of the
phylogenetic tree (Paradis, Claude & Strimmer,
2004), recursively from the root with value zero,
according to the scenarios specified below.

A first class of simulations (‘BM simulation’) gener-
ates 1000 trees with 100 tips along with a continuous
trait for each tree. The trait is evolved according to a
BM process with variance r2 = 0.01. To evaluate the
putative effect of the magnitude of r2, simulations

© 2016 The Linnean Society of London, Biological Journal of the Linnean Society, 2016, 118, 78–94

82 J. B. SMAERS ET AL.



were repeated with r2 = 1, 25, and 100. A second
class of simulations (‘burst simulations’) generates
1000 instances of a continuous trait evolution on a
fixed tree with 100 tips. We distinguish three burst
scenarios (Fig. 2). The ‘one-burst’ scenario assumes
that evolution occurs according to a BM process with
the variance r2 = 0.01 on all branches of the phylo-
genetic tree but a single branch. The ‘burst’ branch
experiences a higher rate of evolution that is mod-
elled by a BM process with variances r2 = 1, 25, and
100. Similarly, the ‘five-burst wide’ scenario assumes
that evolution occurs according to a BM process with
the variance r2 = 0.01 on all branches of the phylo-
genetic tree except for one branch in each of five
major clades in the phylogeny, where r2 set to 1, 25,
and 100. The ‘five-burst close’ scenario is equivalent
to the ‘five-burst wide’ scenario, except that all five
bursts are allocated to within more closely related
clades.

To analyze the accuracy of the cvBM and mvBM
method, we determine, for each simulation run, the
mean of the posterior distributions (based on 106

generations of the MCMC procedure with a 20%
burn-in and sampling every 100th generation) of the
log-likelihood values and the values of the internal
nodes. To quantify the differences, we generate the

distributions of the mean likelihood values and of
the sum and SD of the absolute difference between
the true and inferred mean node values (Figs 3, 4, 5,
6).

Additionally, for each simulation run, the inferred
node values were regressed against the true values.
The R2 value hereby provides an estimate of the
overall fit of the inferred and true values (R2 = 1
indicates that inferred and true values coincide per-
fectly, whereas R2 = 0 points to situations where the
inferred values do not reflect the true values). The
slope of the regression line provides information
about putative over- or underestimation of smaller or
larger true values (a slope of 1 is the benchmark for
accuracy). The intercept of the regression line pro-
vides information about putative consistent over- or
underestimation of true values (an intercept of 0 is
the benchmark for accuracy). The distributions of
these statistics for the considered evolutionary sce-
narios are shown in Figures 3, 4, 5, 6.

Figure 3 summarizes the results for the BM simu-
lation. We deduce that cvBM and mvBM possess
similar accuracy when inferring values of internal
nodes when evolution is simulated according to an
underlying BM process (see also Supporting informa-
tion, Data S2). When comparing the absolute error

One burst Five burst wide Five burst close

Figure 2. The three burst scenarios considered in the simulation example.
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Figure 3. Results of the BM simulation.
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Figure 4. Result of the ‘one burst’ simulation.
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(the sum of the absolute difference between esti-
mated and simulated nodal values averaged across
all simulations) between methods, the difference

between cvBM and mvBM does not exceed 3.3% for
any value of r2 = 0.01, 1, 25, and 100 (see Support-
ing information, Data S2). All other accuracy
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Figure 5. Results of the ‘five burst wide’ simulation.
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Figure 6. Results of the ‘five burst close’ simulation.
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measures are equally comparable between the two
methods (Fig. 3; see also Supporting information,
Data S2). mvBM results further indicate slightly
higher log-likelihood values. This result is expected
given that mvBM includes more degrees of freedom
in its inference.

Results for the burst scenarios (Figs 4, 5, 6 with
r2 = 25 on the burst branch) indicate that mvBM
outperforms cvBM on all accuracy measures. Consid-
ering that, in the BM simulation scenario, the
results for cvBM and mvBM are equivalent, Table 1
uses the calculated absolute error of the BM simula-
tion scenario (r2 = 0.01) as a benchmark to evaluate
how much the inclusion of burst branches increases
the error across scenarios. The results indicate
increasingly disparate results as the r2 of the burst
branches increase.

Table 2 evaluates whether the decreased error in
mvBM is indeed a result of the correct inference of
the evolutionary burst. For this, the ratio of the
average sum of absolute error across simulations of
cvBM to mvBM is listed for the node that is directly
descendant to the burst branch (‘burst’) or nodes that
are within one generation of either the ancestor or
the descendant node of the burst branch (‘related’),
or neither (‘nonrelated’). Table 2 also lists results for
the root value. Overall, the results indicate that
mvBM is consistently more accurate than cvBM (er-
ror ratios between 1.09 and 5.36) and that mvBM is
increasingly accurate relative to cvBM for each set of
nodes as bursts occur at a higher magnitude (higher
r2 values produce less error in mvBM relative to
cvBM). For the one burst scenario, the nonrelated
branches consistently indicate a lower error ratio rel-
ative to mvBM, demonstrating that mvBM is
increasingly accurate in those nodes that surround
the burst branch. The same is true for the five burst

scenarios, although this difference is less pronounced
with stronger bursts. Importantly, for all scenarios,
the root value is indicated to be increasingly more
accurate in mvBM when bursts increase in magni-
tude.

Figure 7 depicts results from an analysis of the
distributions of the evolutionary rates in the ‘one-
burst’ scenario (r2 = 25 for the burst branch;
r2 = 0.01 for all other branches) for the burst branch
(Fig. 7A), a branch closely related to the burst
branch (Fig. 7B), and a branch distant from the
burst branch (Fig. 7C). We observe that the cvBM
approach explains the single burst of evolution by
increasing the rate of evolution across all branches
of the phylogenetic tree (Fig. 8); the single instance
of a large amount of change is averaged over the
tree. By contrast, mvBM identifies the branch where
the burst occurs and infers a much higher evolution-
ary rate for this particular branch (Fig. 7A) and a
more accurately low rate for other branches
(Fig. 7C), which is more comparable with the true
rate of 0.01. This point is further illustrated by Fig-
ure 8, which shows the distribution of r2 values
across the different one burst scenarios obtained by
cvBM. It is obvious that, in the cvBM framework,
larger burst rates along single branches are compen-
sated for by a larger overall rate of evolution. These
results demonstrate that mvBM is able to accurately
distinguish between branches with a low vs. high
rate of evolution.

Table 1. Ratio of the average sum of the absolute differ-

ence between simulated and estimated values across 1000

simulations between each burst scenario and BM

Ratio

One burst

Five burst

wide

Five burst

close

cvBM mvBM cvBM mvBM cvBM mvBM

1 versus

BM

1.15 1.03 1.79 1.22 1.72 1.29

5 versus

BM

2.63 1.29 6.65 2.58 6.35 3.09

10

versus

BM

4.50 1.62 13.53 4.71 11.97 5.34

BM, Brownian motion; cvBM, constant variance BM;

mvBM, multiple variance BM.

Table 2. Ratio of the average sum of the absolute differ-

ence between simulated and estimated values across 1000

simulations between cvBM and mvBM for different subsets

of nodes (see text for definition of the subsets) for each of

the burst scenarios

r Nodes

One

burst

Five burst

wide

Five burst

close

1 All 1.09 1.42 1.29

Burst 1.51 1.86 1.89

Related 1.52 1.62 1.46

Nonrelated 1.02 1.21 1.08

Root 1.25 1.30 1.24

5 All 1.98 2.51 2.00

Burst 2.61 2.66 3.04

Related 3.07 2.46 1.89

Nonrelated 1.63 2.51 1.84

Root 3.73 2.78 2.11

10 All 2.70 2.79 2.18

Burst 2.81 2.72 3.14

Related 3.51 2.54 1.95

Nonrelated 2.36 3.31 2.35

Root 5.55 3.28 2.22
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We note that, per construction, mvBM exhibits a
certain degree of autocorrelation among related
branches (Fig. 7A, B). The degree of autocorrelation
is, however, not prohibitive for accurately detecting
the burst branch in phylogenetic space. To evaluate
the accuracy in detecting the burst branch, we calcu-
late the area of overlap between the probability
density distribution of the inferred rates of the burst
branch and the inferred rates of closely (within two
generations) and distantly (outside two generations)
related branches. The area of overlap quantifies the
certainty with which a higher (or lower) evolutionary
rate is inferred among branches. We consider an over-
lap of < 5% between these distributions (in addition
to the burst branch indicating a higher rate) as an
indication of the accurate detection of the burst
branch. Across both closely and distantly related
branches for the example shown in Figure 7, the
burst branch is correctly identified in 91–95% of the
simulations (i.e. in these situations, the rate of the
burst branch is higher and its probability density dis-
tribution has an area of overlap with the branch it is
compared with of less than 5%). The mean proportion
of simulations in which the burst was accurately
detected is 93.6% across closely related branches and
94.2% across distantly related branches.

EMPIRICAL EXAMPLE: PRIMATE BRAIN AND BODY SIZE

The accuracy of mvBM relative to other methods is
evaluated further by analyzing the evolution of pri-
mate brain and body mass. Brain and body mass
data for 144 extant species were taken from Isler
et al. (2008) and the phylogeny from Arnold, Mat-
thews & Nunn (2010). Primate brain and body mass
are particularly useful when comparing estimated
with ancestral values because the primate fossil
record provides reasonable estimates for several
ancestral nodes. Here, six methods are compared in
their estimation of ancestral values of primate brain
and body mass. Accuracy is assessed through log-
likelihood scores and a comparison of estimated
nodal values with the fossil record.

In addition to ancestral estimation through cvBM,
two classes of methods are considered. A first class of
methods uses maximum likelihood optimization to
estimate parameters that rescale all, or a subset of,
branch lengths homogenously according to the
amount of trait change that is inferred to have
occurred along the subset of branches (Pagel, 1997,
1999). A k model fits the extent to which the phy-
logeny predicts the covariance among trait values for
species. In this model, the lengths of ancestral
branches are multiplied by the value of k. A d model
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fits the relative contribution of early vs. late evolu-
tion, raising all node depths to the value of d. A j
model fits a punctuational model where character
disparity is related to the number of speciation
events among species, raising all branch lengths to
the power of j. A second suite of methods imple-
ments heterogonous rescaling of branch lengths con-
sidering that the tempo and mode of evolution may
be different across phylogenetic space. The first
method fits a multi-rate BM model using reversible-
jump MCMC procedures to estimate how rates vary
across the tree (rjBM) (Venditti et al., 2011). The sec-
ond method is the method proposed in the present
study (i.e. mvBM).

All methods are implemented in a similar manner
using MCMC optimization with 5 9 106 iterations
with a 20% burn-in (resulting in normally dis-
tributed log-likelihood values for all methods). In a
first step, branch lengths are rescaled according to
the above-described procedures for each method. For
the k, d, and j models, parameters are estimated
using maximum likelihood (Harmon et al., 2008). For
rjBM, branches are rescaled as described by Venditti
et al. (2011) and implemented in BayesTraits (Pagel
& Meade, 2013). For mvBM, branches are rescaled
according to the procedure described in the Methods

section of the present study. In a second step, the
rescaled tree is analyzed using constant variance BM
using the MCMC implementation for ancestral esti-
mation as described by Revell (2012). Ancestral val-
ues for the rjBM model are also inferred using
MCMC optimization, although this procedure is
implemented in a different software package (Pagel
& Meade, 2013: BayesTraits). All data were log
transformed prior to analysis.

For mvBM, we further report results for a possible
alternative parameterization of the algorithms
described above. The alternative parameterization
consists of obtaining b̂kniðkÞ by lengthening bkniðkÞ by
bkn1ðkÞ � bkn2ðkÞ=ðbkn1ðkÞ þ bkn2ðkÞÞ rather than bkniðkÞ.
This is an approach similar to that proposed by
Felsenstein (1985) when computing estimated nodal
values with the method of ‘Independent Contrasts’.
The results of the alternative parameterization are
indicated as mvBM2 in Table 3, whereas those of the
parameterizations described in the methods section
are indicated as mvBM1.

Fossil values were selected for those specimens for
which reasonable agreement exists with regard to
their taxonomic position and the estimation of their
brain and body mass. It is clear that fossil values
should not be considered as absolute benchmarks of

Table 3. Results of the ancestral estimation analysis. ‘MRCA’ indicates ‘most recent common ancestor’. ‘Mya’ refers to

‘millions of years ago’. ‘vvBM1’ refers to the parameterization of mvBM as described in the methods section. ‘vvBM2’

refers to an alternative parameterization of mvBM described in the text

Method Log-likelihood

MRCA: Homo-Pan Hominoidea Cercoptihecoidea Simiiformes Galagidae

Mya ~6 ~19 ~21 ~47 ~17
Fossil value 430–540 150–170 53 34 NA

Brain mass (g)

mvBM2 168 453 120 72 43

mvBM1 142 441 126 76 43

rjBM 127 406 108 69 29

d 58 540 192 83 50

k 52 530 175 81 39

j 52 528 173 80 39

cvBM 52 530 176 80 38

Fossil value: 30–39 10–20 4.8 6.7 0.304

Body mass (kg)

mvBM2 31 48.406 9.252 6.707 2.836 0.355

mvBM1 3 48.842 10.494 7.049 2.873 0.309

rjBM �18 55.226 8.238 5.320 1.159 0.192

k �62 52.123 16.686 7.268 2.621 0.241

d �62 53.487 18.457 7.624 3.315 0.224

cvBM �63 52.557 17.024 7.354 2.563 0.231

j �64 51.817 17.017 7.507 2.743 0.240

BM, Brownian motion; cvBM, constant variance BM; mvBM, multiple variance BM; MRCA, most recent common ances-

tor; NA, not available.
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accuracy. Traits such as body mass are difficult to
infer from fossils. Moreover, in the absence of ancient
DNA, the phylogenetic affinity of fossils is mostly
inferred based on a gradual assumption of morpho-
logical evolution. Recent work, however, indicates
that, even within a single anatomical unit, different
modules may deviate from a gradual mode in differ-
ent ways (Kivell, Barros & Smaers, 2013). Despite
these uncertainties, the brain and body mass esti-
mates of several primate fossils have been generally
agreed to be reasonably representative of specific
phylogenetic nodes. These fossil values can thus be
used as approximate benchmarks for the accuracy of
methods aiming to infer the mode and tempo of trait
evolution based on extant information only. For the
brain mass analysis, Australopithecus africanus and
Australopithecus afarensis are considered for the
most recent common ancestor (MRCA) of humans
and chimpanzees (Kimbel, Rak & Johanson, 2004;
Fleagle, 2013), Proconsul (Radinsky, 1974; Walker
et al., 1983) as MRCA of Hominoidea (although
recent work places these fossils in between the
MRCA of Catarrhini and Hominoidea), Victoriapithe-
cus (Benefit & McCrossin, 1997) as MRCA of the Cer-
copithecoidea, and Aegyptopithecus (Radinsky, 1973;

Simons, 1993) as MRCA of the Simiiformes. For the
body mass analysis, Komba robustus is also consid-
ered as MRCA of the galagidae (Steiper & Seiffert,
2012; Seiffert, Costeur & Boyer, 2015).

Table 3 indicates results for brain mass, indicating
that both parameterizations of mvBM yield an
improved statistical fit relative to other methods for
both brain and body mass. For brain mass, all
results lie within the margin of error of the fossil
values, although all methods indicate a slight overes-
timation of the MRCA of Cercopithecoidea. For the
body mass analyses, all methods overestimate the
MRCA of humans and chimpanzees, although both
mvBM parameterizations do so with slightly less
error. Furthermore, the MRCA of Cercopithecoidea is
slightly overestimated (but less so in rjBM), whereas
the MRCA for Simiiformes is underestimated by all
methods (particularly by rjBM). The MRCA of
Galagidae is accurately estimated by both parame-
terizations of mvBM but underestimated by all other
methods (particularly rjBM). Furthermore, rjBM
estimated the root value of both brain and body mass
to be markedly lower than other methods.

Figure 9 presents the rescaled branches of each
method for the analysis of brain mass. We observe

mvBM (2)/logL = 168 mvBM (1)/logL = 142 rjBM/logL = 127

Delta/logL = 58 Lambda/logL = 53 Kappa/logL = 52

Figure 9. The rescaled branches of the ancestral estimation of primate brain size according to each method.
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Figure 10. A visualization of the evolution of brain mass according to mvBM1. Deeper hues of blue represent higher

brain mass, deeper hues of red lower brain mass.
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that, for this sample, the rescaled trees of mvBM
and rjBM look similar. The difference in the
results between these two methods lie in the more
optimal statistical fit of mvBM, and the
markedly lower estimate for the root value by
rjBM. The evolution of brain mass according to
mvBM is visualized in Figure 10. Figure 11 high-
lights the rates for the branches leading up to
humans in the ape clade. In line with the fossil
record, rates are elevated in the ancestral branch
of great apes, relatively lower in subsequent
branches towards humans, and again elevated in
the human branch.

DISCUSSION

Phylogenetic comparative methods are often used to
document patterns of change in biological traits
along the branches of a phylogeny. Such methods
employ formal mathematical models within a
statistical framework. Trait change is described as a
continuous stochastic process (e.g. a BM or Orn-
stein–Uhlenbeck process) and statistical inference
techniques determine the parameters of the involved
stochastic processes so that theoretical patterns
match the observed patterns as closely as possible.
Previous work has, however, shown that these mod-
els may not adequately capture the historical pat-
terns of trait change that we are interested in
(Harmon et al., 2010; Pennell et al., 2015) and also
that the parameters are only loosely tied to the bio-
logical concepts they purport to explain (Pennell &
Harmon, 2013; Pennell, 2015; Pyron, 2015).

Here, we describe a multiple variance BM frame-
work. Our approach differs from standard models
like BM in that it combines a deterministic estima-
tion of branch-specific rates of evolution with a
stochastic inference of values of all internal nodes.
The proposed approach aims to provide a flexible
platform for inferring the patterns of trait change
along each branch of the phylogeny. This aim lies
close to the often-intended use of phylogenetic com-
parative applications to documenting commonalities
and differences among clades through time.

Using a simulation framework, we demonstrate
that the accuracy by which mvBM infers values for
internal nodes is equivalent to a cvBM model if phe-
notypic evolution occurs according to standard BM.
When evolution occurs at different rates along differ-
ent branches of the phylogeny, our approach is
shown to greatly outperform constant variance BM
(Figs 4, 5, 6). The increased accuracy of mvBM is
particularly pronounced for values of the root and
nodes that are in proximity of a burst of change.
Although standard cvBM models deal with evolution-
ary bursts by increasing the rate of evolution for all
branches of the tree (Fig. 8), the mvBM approach
accurately infers a higher rate of evolution for a
burst branch and much lower rates of evolution for
the rest of the tree. Our approach hereby largely
overcomes the problem of ‘inherited error’ that
occurs when applying a standard BM framework to
modelling a trait that evolves with unequal rates.
The mvBM approach accurately infers branches with
a higher evolutionary rate relative to those with a
lower evolutionary rate. An analysis of the evolution
of primate brain and body mass further reveals that
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our approach yields an improved statistical fit rela-
tive to both traditional methods (Pagel, 1997, 1999)
and more recent multi-rate BM methods (Venditti
et al., 2011) and also provides estimates of nodal
values that lie within the range expected based on
the fossil record.

We emphasize that what we propose is a frame-
work of multiple variance BM estimation. We
describe a method that is a possible formalization of
this framework. The results demonstrate that the
described set of estimation procedures [specifically
the definitions of Pk, pk, a, and b̂ in eqns (2–4) and
(7)] are useful for capturing patterns of variable
change through time. We therefore propose this for-
malization as a preliminary standard. Future work
should explore how modifications to these estima-
tions affect performance. It is plausible that different
estimation procedures may provide a better fit for
different datasets. In this context, we describe the
results of a possible modification to b̂ (eqn 7) in our
analysis of the evolution of primate brain and body
size. For the samples considered in this example, this
modification considerably improves the statistical fit.
Modifications to Pk, pk, and a may also prove worth-
while. As reported, the current formalization exhibits
a degree of autocorrelation among closely related
branches, although not prohibitive for accurately
detecting bursts of change in phylogenetic space.
Although it is clear that modifications to Pk, pk, and
a are expected to affect the degree of inferred auto-
correlation, further work is needed to quantify this
relationship.

In conclusion, we present a method that comprises
a deterministic estimation of branch-specific rates of
evolution and a stochastic inference of values of
internal nodes through BM Bayesian MCMC proce-
dures. The goal of this method is to include the
effects of variation in rates of phenotypic change
across phylogenetic space. A series of simulations
demonstrate that the proposed method estimates
internal node values with equal accuracy to constant
variance BM when trait evolution adheres to stan-
dard BM but with higher accuracy when evolution
occurs at different rates along different branches of
the phylogeny. Our approach is suggested to be par-
ticularly useful when shifts in the direction and rate
of phenotypic change occur a few times on a tree.
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