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ABSTRACT

Background: Currently available methods of ancestral reconstruction are built either on
Brownian Motion (BM) or Ornstein-Uhlenbeck (OU) models of evolution. Results from these
methods sometimes do not agree with the fossil record.

Aim: Develop a new method, the method of Independent Evolution (IE), built on an
adaptive peak model of evolution.

Key assumptions: In evolution, population phenotypes are affected by the wandering adaptive
peaks of adaptive surfaces. Branch-specific rates of evolution depend on weighted, relative
distances between an ancestral adaptive peak and a new adaptive surface that descendant
populations attempt to climb.

Methods: We defined an eight-step algorithm to incorporate the assumptions, and then
applied it recursively for each node in the tree to produce the phylogenetic histories.
We performed two studies: a simulation study of directional selection on particular branches
in a model primate phylogeny, and a case study of primate brain and body size in which
we reconstructed the ancestral states of primate brain sizes and body sizes and
compared them with 28 fossil data points. In each study, we used strong inference – that is, we
employed six different methods of ancestral reconstruction to determine how well each
succeeds. Four of the methods of ancestral reconstruction are based on BM, one on the OU,
and one is IE.

Results: The method based on an adaptive peak model of evolution (IE) significantly
outperformed both BM-based and OU-based methods of ancestral reconstruction in the
simulation study. Independent Evolution also yielded much more accurate estimates of ancestral
(i.e. fossil) primate brain and body sizes than the other methods of ancestral reconstruction.
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INTRODUCTION

Methods of ancestral reconstruction (MARs) take into account phylogenies and estimate
patterns of change along the branches of the phylogeny based on extant variation in order
to investigate timing and mode of character acquisition and infer trait co-evolution
(Pagel, 1999). Ancestral reconstruction of character states can help to fill in the gaps of the
palaeontological record, expand the range of variables that can be included in the analysis,
and increase the level of detail by which historical patterns of character evolution can be
revealed (Harvey and Pagel, 1991). Methods of ancestral reconstruction thus provide a valuable
contribution to traditional palaeontological approaches (e.g. Finarelli and Flynn, 2006; Soligo, 2006),
especially in cases where the fossil record is patchy or incomplete and where biological traits
that do not fossilize are under investigation (e.g. soft tissue).

To assess the influence of historical and biological processes on evolution, methods of
ancestral reconstruction assume that: historical patterns of evolutionary change along the
branches of a phylogeny are preserved in the variation among the tips of the phylogeny; the
phylogeny used is correct; and the model of evolution used to ‘count back in time’ is a valid
approximation of how the trait under investigation has actually evolved (and hence that the
data must comply to the assumptions of the model) (cf. Pagel, 1999).

Because methods of ancestral reconstruction aim to estimate the (most often
unobservable) past, a great deal of attention must be given to the question of how we test
their accuracy. Two main approaches have been used: comparing what is known from
the palaeontological record with the estimates of particular methods of ancestral
reconstruction (e.g. Oakley and Cunningham, 2000; Polly, 2001; Webster and Purvis, 2002a, 2002b) and assessing
the accuracy of MAR estimates of simulated patterns of evolution (e.g. Martins and Garland, 1991;

Gittleman and Luh, 1992; Diaz-Uriarte and Garland, 1996, 1998; Martins, 1999; Martins et al., 2002; Housworth et al., 2004;

Hansen et al., 2008). These studies, however, have shown that accurately estimating ancestral
states of quantitative characters is a real challenge, leading some authors to suggest that no
currently available method yields acceptable results (e.g. Oakley and Cunningham, 2000; Webster and

Purvis, 2002a, 2002b). The root of the problems associated with ancestral estimation is commonly
attributed to unrealistic assumptions regarding the model of evolution (Martins and Garland, 1991;

Westoby et al., 1995; Diaz-Uriarte and Garland, 1996; Price, 1997). Methods of ancestral reconstruction are
generally built around either a Brownian Motion (Felsenstein, 1985; Maddison, 1991; Schluter et al., 1997)

or an Ornstein-Uhlenbeck model of evolution (Hansen, 1997; Butler and King, 2004; Hansen et al., 2008).
Brownian Motion (BM) is a model originally used to describe the evolution of gene

frequencies (Edwards and Cavalli-Sforza, 1964), incorporating a purely gradual evolutionary scenario
assuming that rates of change are constant throughout time and along all branches and
that the probability of trait change is independent from both prior and current character
states and from changes elsewhere in the tree (Schluter et al., 1997; Webster and Purvis, 2002b).
Felsenstein (1985), Maddison (1991), and Schluter et al. (1997) developed methods of ancestral
reconstruction that are directly, or indirectly, based on the BM model of evolution. The
main advantage of applying BM to estimating the evolution of quantitative characters is
that it is mathematically tractable, since change is assumed to be proportional to branch
length. The disadvantage of a purely gradual model of evolution is that it may be
inappropriate to study adaptive evolution (Westoby et al., 1995; Price, 1997), in particular when a
trait is thought to be evolving under selection (Felsenstein, 1988; Harvey and Pagel, 1991; Harvey and

Rambaut, 2000) or when two species are under different selective regimes (Butler and King, 2004). The
underlying reason for this is that BM does not allow a trait to be ‘pulled’ towards a more
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optimal value with any force other than one assumed to be normally distributed with mean
zero and a variance proportional to the time over which the change occurs. In other words,
the character state of the descendant is not expected to match a more adaptive optimal
value if the character state of the ancestor does not match it. Brownian Motion-based
methods are thus expected to ‘carry over’ error from ancestor to descendant when a burst
of selection occurs on one particular branch [referred to as ‘the problem of inherited
maladaptation’ by Hansen and Orzack (2005)].

Felsenstein (1988) originally proposed the use of the Ornstein-Uhlenbeck (OU) process
(Uhlenbeck and Ornstein, 1930) in the context of ancestral estimation. This process models change
towards an adaptive optimum and provides a good approximation of a population that is
wandering back and forth on a selective peak under the influence of genetic drift. The
change around the adaptive optimum varies in a way typical of BM. Methods built around
the OU process thereby overcome the main disadvantage of BM-based methods (i.e. not
taking into account selection) by modelling adaptive change towards selective peaks.
Hansen and colleagues (Hansen, 1997; Hansen et al., 2008) and Butler and King (2004) further
developed OU-based approaches by developing methods to incorporate multiple selective
regimes with different selective peaks and different selective ‘powers’ in order to assess
correlated evolution of biological traits. The OU-based methods thus take into account
selection and formalize selection as a combination of inertia and adaptation given a specific
optimum (Hansen, 1997; Butler and King, 2004; Hansen and Orzack, 2005; Hansen et al., 2008). The disadvantage
of the OU model of evolution is that it gradually ‘forgets’ past history because the steady
pull towards an adaptive optimum gradually erases older historic information. However, it
is generally accepted that morphology often allows us access to information on ancient
evolutionary events, thus limiting the explanatory value of a model of evolution that erases
all record of ancient phenotypes (Felsenstein, 1988, p. 465).

In general, BM-based methods do not take into account selection and assume that traits
change at a rate proportional to the time over which the change occurs, while OU-based
methods take into account selection by predefining a number of selective optima (‘niches’)
that can be mapped onto a phylogeny (Butler and King, 2004) or by allowing the selective optima
to vary at random over time (Hansen et al., 2008).

In this paper, we propose a novel method of ancestral reconstruction (the method of
Independent Evolution, IE) that models character evolution using an ‘adaptive peak (AP)
model’ [first suggested in the context of ancestral reconstruction by Felsenstein (1988)]. Such
a model assumes that, at each moment in time, a population is attempting to climb an
adaptive peak whose location wanders with time (Felsenstein, 1988, p. 453). As the adaptive peak
wanders through phenotypic space, it pulls the population along with it. The adaptive peak
may sometimes favour higher, sometimes lower phenotype (incorporating variation in
selection into the model) and may differ for each internal node. Using this model, the main
factor affecting the population’s movements is the covariance matrix of the peak’s move-
ments, which can only be obtained by directly observing the process of phenotypic change
in palaeontological time, or inferring it from the differences between species (Felsenstein, 1988,

p. 454). Theoretically, the AP model of evolution includes more specific models of evolution
such as BM and OU by allowing adaptive peaks to differ for each internal node. When
adaptive peaks favour static higher or lower phenotypes in a particular sequence
of descendant nodes, they have a similar function as ‘selective optima’ in the OU model of
evolution, ‘pulling’ the population towards a static selective peak within the confines of a
particular ‘selective regime’. When, however, the adaptive peaks favour static values across
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all nodes, the adaptive peak model closely resembles BM. Taking into account that under an
adaptive peak model of evolution selection will cause the population to move in each
generation towards the peak of the adaptive surface, the IE model recalculates the value of
the adaptive peak for each internal node and formalizes the ‘pull towards the adaptive peak’
as the discrepancy between the value of the adaptive peak for internal node x and the values
of the descendant nodes of x. The main advantage of the IE algorithm based on an
adaptive peak model of evolution is that it allows one to incorporate purely gradual
evolutionary scenarios (such as BM) and deviations from them (such as OU-inferred
scenarios) as special cases.

Because the underlying process of evolution of many traits is mostly unknown, testing the
validity of a single hypothesis (i.e. a specific model of evolution proposed to approximate
the underlying process of evolution) may not be the most beneficial approach to evaluating
the analytical power of different methods of ancestral reconstruction. Here we use the
method of strong inference (Platt, 1964) by comparing a set of alternative hypotheses (different
methods of ancestral reconstruction), each of which proposes a particular model of evolu-
tion (BM, OU or AP) to best describe the underlying evolutionary process. We use a
simulation study and a case study of primate brain and body size to evaluate which of the
alternative hypotheses (i.e. which of the different methods of ancestral reconstruction)
yields the most accurate results. In the simulation study, we simulate directional selection on
particular branches in the phylogeny and investigate the ability of each method of ancestral
reconstruction to accurately detect phenotypic changes in the nodes surrounding the
‘selection branch’. Ancestral states of primate brain size and body size are then
reconstructed for different methods of ancestral reconstruction and compared with fossil
values. The BM-based methods used in the current analysis include: Independent Contrasts
(Felsenstein, 1985), weighted for branch lengths (IC) or not so weighted (UIC, for unweighted
independent contrasts); squared change parsimony [SCP (Swofford and Maddison, 1987; Maddison,

1991)]; and the one-parameter maximum likelihood method [ML-BM (Schluter et al., 1997)]. The
OU-based method used in the current analysis is a two-regime model using four different
‘selective powers’ [α = 0.5, 1, 1.5 or 2; incorporated using COMPARE (Martins, 2004)]. In both
the simulation study and the case study, the performance of these methods is compared with
that of IE.

THE METHOD OF INDEPENDENT EVOLUTION

The IE distance metric

When considering the divergence of a trait between two species, gradual models of evolu-
tion assume that it evolved by a similar absolute amount per unit time along the two
branches from a last common ancestor (cf. Felsenstein, 1985). However, since a 50-g change in
body size represents much more relative trait divergence or trait evolution in a mouse than
in an elephant, absolute size is generally seen as a potentially confounding variable
(e.g. McMahon and Bonner, 1983). We therefore prefer to use a metric that directly measures
proportional change. By dividing the amount of trait change (or Euclidean distance
between two species) by the average magnitude of the trait, we obtain an estimate of
‘relative change’. Consider the example of an ancestor with a trait value of 100 and a
descendant with a trait value of 50 (Fig. 1). The estimate of relative change is therefore
−0.66 (50 − 100/75). Suppose the same ancestor also produces a descendant with a trait
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value of 200. The relative change here will be 0.66 (200 − 100/150). The relative change
along a branch is thus calculated as the change between ancestor and descendant divided by
their average. Note that the absolute value of the estimate of relative change is the same
when the ancestor either decreases or increases in size with an equal factor, while the
absolute change is quite different. This distance metric is therefore a useful way to quantify
relative or proportional change, as it provides equal values for equal relative change,
independently of the absolute value of the trait.

Estimating IE ancestral states

Independent Evolution estimates trait evolution and ancestral states directly from the trait
distribution across species. Figure 2 considers a given continuous trait x and the estimation
of the common ancestor (A1,2) of two extant species 1 and 2. The IE algorithm consists of
eight steps:

1. We select a group of species including species 1 and 2 with resolved phylogeny, known
branch lengths at every node, and data on trait x for all terminal taxa (Fig. 2.1).

2. An ‘adaptive peak’ (AP) is calculated (as described below) at internal node A1,2 from data
for all terminal taxa (Fig. 2.2).

3. The adaptive peak replaces all branches of the tree ancestral to A1,2. The tree is then
unrooted creating a star tree including AP, x1, and x2 (Fig. 2.3).

4. The star tree is considered as a triangle whereby the barycentre of the triangle represents
A1,2, and values x1, x2, and AP are represented by the tips of the triangle (Fig. 2.4).

5. We use the IE distance metric between x1, x2, and AP to calculate the triangle sides
(S1, S2, and S3; Fig. 2.5).

6. Using the Ptolemean property of triangle inequality, we calculate the distance from A1,2

to the three tips x1, x2, and AP (T1, T2, and T3) based only on the triangle sides (Fig. 2.6)
[for a more in-depth discussion on using Ptolemy’s theorem on triangle inequality in
estimating trees from distance matrices, see Farris (1970, 1972)].

7. The resulting distances from A1,2 to tips AP, x1, and x2 represent the relative phenetic
distances between ancestor (A1,2) and descendants (x1 and x2), taking into account the
AP (Fig. 2.7).

8. The distances between A1,2 and x1 and x2 (T1 and T2) are weighted for their phylogenetic
branch lengths, creating a rate of change (‘R-value’) for the branch of each descendant
of ancestor A1,2. R-values, representing the relative branch-specific evolutionary change
of a trait, are then used to estimate A1,2 according to Felsenstein’s (1985) algorithm
(Fig. 2.8). Note that with equal phylogenetic branch lengths in sister branches, the
weight for both phenetic branch lengths equals unity.

Fig. 1. The IE distance metric in sister species. d represents the distance between nodes.
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Fig. 2. The IE procedure for estimating ancestral states. x represents a continuously defined biological
trait; xi  represents the extant value of trait x for species i; bi  represents the phylogenetic branch length
for species i; Ai, j represents the ancestral value for species xi  and xj; S represents the relative phenetic
distances between the tips of the triangle (thus representing the sides of the triangle); T represents the
relative phenetic distance from A to the tips of the triangle; R represents relative branch-specific
evolutionary change of trait x.
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To calculate ancestral values further down the tree, the eight-step algorithm is repeated
recursively starting at the terminal taxa and proceeding towards some internal node of
interest. At each step in the recursion, the estimated ancestral value at each internal node is
stored and used as a descendant value to calculate ancestral values further down the tree.

Following Felsenstein’s (1988) suggestion to assume that the adaptive peak changes
through time wandering according to a BM, the IE adaptive peak for a particular internal
node is calculated based on the BM-based Independent Contrasts algorithm to estimate
ancestral states: the sum of the sister nodes divided by their branch lengths, divided by the
sum of their inverse branch lengths. However, instead of only taking into account direct
descendants when assigning nodal states, the IE adaptive peak extends this approach to
all extant values. In other words, the IE adaptive peak value is calculated as the sum of all
terminal nodes divided by the patristic difference between the terminal node and the node
in question, divided by the sum of the inverse patristic differences of all terminal nodes
(Fig. 2.2). The patristic difference is defined as the sum of the lengths of the branches lying
on the path connecting the two nodes (Farris, 1967). The IE algorithm to estimate the adaptive
peak thus takes into account all the available (i.e. extant) biological information provided by
the taxa in the phylogeny in order to increase the reliability of character optimization (Ryan,

1996; Cunningham et al., 1998; Lee and Shine, 1998), with the additional advantage of giving more weight
to a species the closer it is to the ancestor being estimated. The assumption is that change
among closely related species is likely to be directed towards an optimum that is most
apparent in the trait’s distribution among its closest relatives. As the adaptive peak is
considered to represent the trait’s distribution at the node in question, it replaces all
branches of the tree apart from the descendant branches of A1,2 (Figs. 2.2 and 2.3).

Properties of IE’s adaptive peak model of evolution

By estimating an adaptive peak for each internal node of the tree and calculating the
distance between the value of the adaptive peak for that particular internal node and the
value of its descendant nodes to reflect different degrees of selective power, IE models
a population moving in each generation towards the peak of the adaptive surface. The
adaptive peak is inferred from the differences between extant species and is thus only
constrained by extant variation. By allowing the adaptive peaks to differ for each internal
node, variation in selection is incorporated into the model sometimes favouring higher,
sometimes lower phenotypes.

The combination of these properties allows the inclusion of specific models of evolution
such as BM and OU as special cases of IE’s underlying adaptive peak model. Formally, IE’s
adaptive peak model collapses into a BM model of evolution when S2 equals S3 in Fig. 2.5,
because the IE algorithm for calculating A1,2 is then reduced to the estimation of ancestral
states via Independent Contrasts under an explicit BM model of evolution. When S2 ≠ S3,
directional trends can be recognized indicating the wanderings of the adaptive peak
towards a new adaptive surface. The larger the inequality between S2 and S3, the larger the
directional trend that is inferred. Within IE, adaptive peak values have a similar function
as the ‘selective optima’ used in OU-based methods, pulling the population towards a
particular phenotype. Formally, the possibility of a ‘pull’ towards a selective optimum as
modelled by an OU model of evolution is incorporated into IE’s algorithm when a great
disparity exists between S2 and S3 in a particular branch directly followed by a sequence of
branches in which S2 ≈ S3. Such variation in selection is taken into account by recalculating
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S2 and S3 for each internal node depending on the adaptive peak for that node. In this way,
the properties of IE’s algorithm allow the possibility to incorporate fundamental aspects
of the OU model of evolution. The difference is that IE infers the value of the selective
optimum and where the selective regime takes place based on extant variation, while
OU-based methods either a priori define the topological location of the selective regime and
the value of the selective optimum (Butler and King, 2004) or allow the selective optima to vary at
random over time (Hansen et al., 2008). In the case where a valid argument can be made towards
predefining selective optima in particular selective regimes, IE can accommodate this
by adjusting the value of the adaptive peaks accordingly. Selective regimes are then
incorporated into IE in much the same way as Butler and King (2004) suggest incorporating
selective optima when using an OU model of evolution. Independent Evolution thus
provides the algorithms needed to formally include specific models of evolution such as BM
and OU into a theoretically more inclusive adaptive peak model of evolution when
reconstructing ancestral states.

SIMULATIONS

Simulation studies are commonly used to investigate the statistical properties and analytical
power of comparative methods (Martins and Garland, 1991; Gittleman and Luh, 1992, 1994; Diaz-Uriarte and

Garland, 1996; Garland and Diaz-Uriarte, 1999; Martins et al., 2002; Housworth et al., 2004; Hansen et al., 2008).
Simulation procedures usually assign a specific value at the root of the phylogeny and add
random change to the previous value at each step in the phylogeny until trait values are
obtained for all terminal nodes (cf. Martins and Garland, 1991; Garland et al., 1999; Martins, 1999). Different
models of evolution are commonly simulated by using BM as a template of change and
adjusting the rate of change or the length of particular branches (e.g. Martins and Garland, 1991;

Martins, 1993; Diaz-Uriarte and Garland, 1996; Butler and King, 2004).
The current study employs a strong inference approach to evaluate the effect on perform-

ance of ancestral reconstruction between different alternative hypotheses (i.e. different
methods of ancestral reconstruction built on different models of evolution) when
simulating directional selection on particular ancestral branches in the phylogeny. Our
simulation uses the topology of a model primate phylogeny and simulates phenotype values
for each node in the tree. A primate phylogeny is used as a model phylogeny because
primates are the most well-studied clade in this context, providing a realistic topology with
resolved branch lengths at every node and a large sample of terminal taxa. To simulate
phenotype values for every node in the phylogeny, BM is used as a template by
randomly assigning each branch with an index of percentage of change (Ci) varying
between −0.1% and 0.1%. Internal node values are then reconstructed from the root upwards
according to the following algorithm: descendant = ancestor [(Ci/100) + 1]branch length.
Directional selection is simulated by adjusting the rate of change (i.e. Ci  value) on particular
branches to 10%, 20%, −10% or −20% (representing positive and negative directional
selection on the one hand and strong versus moderate selective power on the other). Each
‘simulation-run’ thus reconstructs values for all internal and terminal node values of
the phylogeny. Reconstructed values can be considered to represent a hypothetical bio-
logical trait (e.g. body size). Simulated terminal node values are subsequently used as input
for each method of ancestral reconstruction, providing MAR estimates for all internal
nodes, which are compared to the simulated values of the internal nodes to assess accuracy.
Figure 3 indicates the topology of the primate phylogeny used (Smith and Cheverud, 2002),
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Fig. 3. Topology of the primate phylogeny used in the simulation study. Directional selection
is simulated on ‘Branch A’ and ‘Branch B’. Numbers indicate the ancestral nodes for which accuracy
is assessed using different methods of ancestral reconstruction.
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where directional selection is simulated and the ancestral nodes are assessed in terms of
accuracy.

Accuracy is assessed by considering MAR estimated ancestral values relative to simulated
ancestral values for particular internal nodes (MAR estimate/simulated value). This results
in a value indicating a percentage of residual error (a value of 1.20 indicates that the MAR
estimate overestimates the simulated value by 20%). When MAR estimates underestimate
simulated values (0 < residual error < 1), residual errors are inversed and given a negative
sign so that the order of magnitude is comparable to when simulated values are over-
estimated. For each simulation, 10 simulation runs are considered. Such a small number
of simulation runs is justified because standard deviations of simulated values over 10
simulation runs do not surpass 0.02 while averaging around 100 within each simulation.

Results indicate that the baseline BM simulation (in which no directional selection is
assigned) yields accurate results for all methods of ancestral reconstruction (average of
residual errors within MARs = 1.00, standard deviations of residual errors within
MARs < 0.001, average of ancestral values ∼100). This confirms the ability of IE and OU
to collapse into BM when its premises are not violated.

Figures 4 and 5 show results when directional selection is simulated on the ancestral
branches indicated in Fig. 3. The choice as to which branch is used to simulate directional
selection on is trivial because similar trends can be recognized for all branches (similarities
between Branches A and B can be recognized when comparing Figs. 4 and 5). Four variants
of directional change are considered: positive and negative selection with a moderate
or a strong selective regime. Figure 4 compares the accuracy of the indicated ancestral
nodes between IE and BM-based methods, while Fig. 5 compares results between IE and
OU-based methods.

Fig. 4. Results for IE and BM-based methods of ancestral reconstruction when considering positive
and negative directional selection under a selective regime with moderate power. For Branch A,
directional selection is simulated on the branch connecting ancestral nodes 2 and 3; for Branch B,
directional selection is simulated on the branch connecting ancestral nodes 43 and 44. Crosses indicate
the results for IE, squares for IC, triangles for UIC, circles for SCP, and diamonds for ML-BM.
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When considering the results for positive directional selection in Fig. 4, IE and BM-based
methods pile up error in nodes ancestral to the branch on which directional selection is
simulated, indicating most error in the node directly ancestral to the directional branch,
and error gradually disappearing in higher nodes. More specifically, an overestimation of
ancestral states is indicated. Independent Evolution, however, indicates more accurate
results than any BM-based method for every ancestral branch considered. When
considering negative directional selection in Fig. 4, SCP and ML-BM indicate an
overestimation of the ancestral states in the nodes descendant from the directional branch
and an underestimation of the nodes ancestral to it, while only the latter trend occurs for IC
and UIC, but in a more pronounced way. Also here, IE outperforms all BM-based methods.
This result accurately reflects what has been referred to as the problem of ‘inherited
maladaptation’ when using BM to model selection (Hansen and Orzack, 2005).

Comparing the performance of IE to OU-based methods, Fig. 5 indicates that only nodes
descendant from the directional branch indicate significant error in OU-based methods.
More specifically, nodes descendant from the directional branch are significantly under-
estimated in the case of positive directional selection and significantly overestimated when
negative directional selection is simulated. For Branch A this is true for all descendant nodes
of the directional branch, while for Branch B this is only true for some descendant nodes
(42 and 43), as others are accurately reconstructed (40 and 41).

When considering ancestral nodes that are not descendant or ancestral to the directional
branch, IE and all BM-based methods indicate no error, thus accurately reflecting the
simulated BM template. The OU-based methods, however, consistently over- or under-
estimate all ancestral nodes depending on whether the selective regime is positive or

Fig. 5. Results for IE and OU-based methods of ancestral reconstruction when considering positive
and negative directional selection under a selective regime with moderate power. For Branch A,
directional selection is simulated on the branch connecting ancestral nodes 2 and 3; for Branch B,
directional selection is simulated on the branch connecting ancestral nodes 43 and 44. Crosses indicate
results for IE, squares for OU0.5, triangles for OU1, circles for OU1.5, and diamonds for OU2.
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negative. This trend differs between moderate and strong selective powers only in order of
magnitude and is more pronounced when considering positive directional selection (2–3%
for positive moderate, 6–9% for positive strong, 1–2% for negative moderate, and 2–3% for
negative strong directional selection). Furthermore, Figs. 4 and 5 only consider directional
selection on ancestral branches. When directional selection is simulated on terminal
branches, the same trends occur (data not shown). Note that in this case OU-based methods
do not indicate a burst of error in any particular ancestral node, because the error in these
methods is especially concentrated on nodes descendant from directional branches. As
the power of the selective regime increases, OU-based methods, however, still consistently
over- or underestimate all ancestral nodes depending on whether the selective regime is
positive or negative. Finally, comparing results between moderate and strong selective
regimes reveals that residual error for all methods of ancestral reconstruction only differs in
order of magnitude (Fig. 6).

Results thus indicate that IE significantly outperforms both BM-based and OU-based
methods of ancestral reconstruction when simulating different degrees of directional
selection on specific branches in the currently considered phylogeny. When considering
either moderate or strong selective power, results differ only in order of magnitude (mutatis
mutandis when considering directional selection on small vs. long branches). These results
confirm what is expected from the theoretical development, which suggests that IE
accommodates variation in selection more accurately than methods that are built on either
a BM or an OU model of evolution.

Fig. 6. Results for IE and BM-based methods when positive directional selection is simulated and for
IE and OU-based methods when negative selection is simulated, both under a selective regime with
strong power. Comparing the former with results from Fig. 4 and the latter with results from Fig. 5
clearly indicates that the difference in results when simulating directional selection under a selective
regime with moderate power differs from a selective regime with strong power only in order of
magnitude.

Smaers and Vinicius1002



ESTIMATING ANCESTRAL PRIMATE BRAIN AND BODY SIZE

Applying the strong inference approach, we also use primate brain and body size as a
worked example to evaluate the accuracy of six methods of ancestral reconstruction by
comparing their estimates with fossil data. We focus more on body size, as fossil brain data
are less abundant.

Phylogeny and data set

The phylogeny of Smith and Cheverud (2002) is used, adjusted for 105 extant species (23
Strepsirhini, 32 Platyrrhinii, 47 Catarrhini; see Fig. 4). We use this phylogeny because it is
fully resolved for all nodes and provides divergence date estimates for each node. The body
mass data are from Smith and Cheverud (2002); brain size data are from Bauchot and
Stephan (1969), H. Stephan (unpublished data), and Kaplan et al. (2003); and fossil data are from
Aiello and Dunbar (1993), Fleagle (1999), and Moyà-Solà et al. (2004) (see Appendix 1).

Mapping fossils onto the phylogeny

To overcome some of the uncertainties related to mapping fossils onto particular topo-
logical locations, a consistent three-step procedure is used based on the age of the fossil and
its proposed phyletic relationships (see Appendix 2): (1) a specific age or epoch is assigned to
every fossil based on the dating of the site in which it was recovered; (2) based on the
proposed phyletic relationships of a particular fossil, a specific phylogenetic branch or node
is assigned onto which the fossil should be mapped; (3) if the specific age attributed to every
fossil (in step 1) overlaps with its assigned branch or node (in step 2), the corresponding
topological location is used for that fossil (applies to 22 fossils used). If, however, there is no
overlap between information from steps 1 and 2 (applies to three fossils used: Dolichocebus
gaimanensis, Homunculus, and Aegyptopithecus), the topological location of the fossil is
attributed to that point on the assigned branch (from step 2) that is closest to its attributed
specific age (from step 1). For the latter three fossils, the difference between its assigned
branch and its attributed specific age is no more than 2 Mya (see Appendix 2).

Webster and Purvis (2002b) provided the first comparison of a wide range of methods of
ancestral estimation against fossil data using estimates of eight fossil Platyrrhine species. We
extend this approach by assessing 28 primate fossil data points that can be considered to be
in a direct line of ancestry to at least some of the extant species of the phylogeny (see Fig. 7
and Appendix 1), including six of eight fossil species that Webster and Purvis assessed [data
on Mohanamico hershkovitzi are not included in the current analysis because its extant
descendant Callimico goeldii is not included in Smith and Cheverud’s (2002) phylogeny; data
on Protopithecus brasiliensis are not included because it constitutes ‘the first fossil primate
that was recognized to be unlike any living species’ (Fleagle, 1999, p. 441)].

Assessing accuracy

We use four measures to assess accuracy of ancestral estimates. Three of these measures are
absolute, in the sense that they provide a test on whether a method is accurate or not (e.g. on
level P < 0.05). The fourth method is a relative measure of accuracy in the sense that it
indicates the relative accuracy of one method over another (e.g. method 1 is three times
more accurate than method 2).
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Absolute measures

First, overall r2 is the proportion of variance among ancestral values that is explained by the
estimates. However, r2 should not be assessed alone, since the correlation r (standardized
coefficient) between observation and estimate may be high even if the slope (non-
standardized coefficient) relating the two is not unity and/or the intercept is not zero
(a regression with slope 1 and intercept 0 is expected if predicted values are accurate,
i.e. similar to observed values). Since both variables in the regression are subject to error,

Fig. 7. The primate phylogeny used in the estimation of fossil data points by different methods of
ancestral reconstruction. To estimate ancestral primate brain and body size, fossil data points are
mapped onto the phylogeny and MAR estimates of the fossil data points are calculated based on
extant values.
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reduced major axis regression is used (Sokal and Rohlf, 1995) and implemented using RMA for
JAVA (Bohonak and van der Linde, 2004). As a second measure of accuracy, we divide the estimate by
the fossil value. Since deviation from unity represents error, we used a one-sample t-test
(with a set value of 1) to determine whether the average of estimations deviates from unity.
A weakness of this method is that the average can equal unity while the standard deviation
around the mean is large. Using this measure of accuracy, a method with good accuracy
would therefore not only have a mean value of unity, but also a low standard deviation
around the mean. A third absolute measure of accuracy consists of a paired-samples t-test
between the residual errors (calculated as the absolute difference between the actual fossil
value and the estimate) of different methods.

Relative measure

A fourth measure (E-value) calculates the absolute difference between the estimate of each
method and the fossil data point (residual error) for each node and divides results for IC,
UIC, ML-BM, and SCP by that of IE to determine to what extent IE outperforms other
methods. The E-value for each method is averaged across nodes to produce the overall
E-value for a particular method.

Results

A reduced major axis regression between actual fossil body size values and estimates of
them (for a full list of the estimates of all fossil data points, see Appendix 3) indicates
accurate results for IE, SCP, and ML-BM in terms of intercept and slope (see Table 1). Both
IC and UIC indicate intercepts significantly lower than zero and slopes significantly higher
than unity. A one-sample t-test reveals that IE, IC, and UIC are the only methods in which

Table 1. Results of four accuracy measures for the estimates of fossil data points by different methods

Reduced major axis
One-sample

t-test
Paired-sample

t-test E-value

r2
rma Interceptrma Sloperma E σ Average σ Eall Eexcl 4

IE 0.956 0.151 0.964 1.074 0.346 3523 5315 1 1
ML 0.929 0.343 0.936 1.326** 0.461 6048# # 7880 4.07 4.14
SCP 0.940 0.211 0.964 1.243** 0.406 5660# 8502 3.35 3.51
IC 0.932 −0.452 1.129* 1.230* 0.648 6653# 9119 4.97 2.10
UIC 0.944 −0.567* 1.151* 1.135 0.513 6163 10157 4.44 1.91
OU0.5 0.487 2.163*** 0.470*** 2.383* 3.007 6541# 7989 17.62 6.22
OU1 0.428 2.203*** 0.458*** 2.424* 3.093 6942# # 8151 18.17 6.28
OU1.5 0.415 2.218*** 0.454*** 2.468* 3.170 6975# # 8137 18.26 6.23
OU2 0.409 2.226*** 0.453*** 2.494* 3.218 6975# # 8131 18.33 6.19

Note: All data points are described in Appendix 3. N = 28 for all methods. Reduced major axis regression,
one-sample t-test, and paired-sample t-test represent absolute measures of accuracy; E is a relative measure of
accuracy. Eall indicates the E-values based on all fossil data points; Eexcl 4 indicates E-values based on all fossil
values excluding 4 fossils with exceptionally high E-values (see text for explanation). Values marked *, **, and
*** are significantly different from 0 (for Interceptrma) and 1 (for Sloperma and E of the one-sample t-test) at
P < 0.10, P < 0.05, and P < 0.01 respectively. Values marked with # and # # are significantly different from the IE
value at P < 0.10 and P < 0.05 respectively.
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the average of the estimated value divided by the fossil value does not significantly
differ from unity (see Table 1), although the standard deviation around the mean is
lower with IE than any other method. Furthermore, a paired-samples t-test between the
residual errors of different methods indicates that the average residual error per fossil data
point is significantly smaller in IE compared with any other method apart from UIC
(see Table 1).

The E-values confirm that IE outperforms other methods, indicating that IE is consist-
ently around between 3 and 18 times more accurate than the other methods (see Eall in Table
1). More detailed analysis of specific data points reveals that E-values are exceptionally high
for four fossil data points in IC, UIC, SCP, and ML-BM: Progalago – Komba, Lagonimico
conclutatus, Proconsulidae, and Dryopithecus (E-values averaged across methods of
ancestral reconstruction: 34.97, 17.77, 28.76, and 14.39 respectively). For the OU-based
methods, four other fossil data points reveal exceptionally high E-values: Progalago –
Komba, Nycticebus simpsoni, Lagonimico conclutatus, and Aotus dindensis (E-values
averaged across methods of ancestral reconstruction: 1062.31, 674.73, 249.73, and 71.20
respectively). These exceptionally high E-values may artificially inflate the E-values. The
E-values are therefore also calculated excluding these four fossil data points and results
indicate that IE still provides estimates that are consistently 2–6 times more accurate than
other methods (see Eexcl 4 in Table 1).

Overall, these results indicate that for the current analysis, IE yields more accurate
results than the other methods considered. Furthermore, Table 1 suggests that IC and UIC
underestimate lower actual fossil values and overestimate higher actual fossil values
(intercept < 0 and slope > 1), while ML-BM and SCP consistently overestimate all actual
fossil values (r2 < 1 and the average of the estimate divided by the actual fossil value > 1,
while intercept = 0 and slope = 1). The OU-based methods do not yield accurate results
for any of the accuracy measures considered.

The two-regime OU model of evolution used in the current analysis may be considered to
be inappropriate for modelling primate body size evolution because more than two selective
regimes are expected to occur. However, when considering R-values as produced by the only
method that yields accurate estimates of fossils (IE), results indicate that selective regimes
are gradually distributed throughout phenotypic space (Fig. 8) rather than distinctly
characterized on particular topological locations. When considering the evolution of
primate body size, this calls into question the validity of predetermining a distinct
amount of selective regimes on specific topological locations, such as is done in OU-based
methods that allow the incorporation of multiple selective regimes (e.g. Butler and King, 2004;

Hansen et al., 2008).
Furthermore, R-values, which can be interpreted as branch-specific rates of change, can

be plotted to investigate evolutionary change within and between species or subfamilies of
species within and between traits. Comparing primate brain size and body size using IE,
the R-values reflect what is commonly known about brain-to-body allometry and species
dwarfism and gigantism. When regressing R-values of brain size onto R-values of body size,
a slope of 0.770 is obtained. This scaling parameter is in line with earlier studies (e.g. Eisenberg,

1981; Armstrong, 1982a, 1982b, 1983; Martin, 1982). In terms of gigantism, Homo sapiens yields the
highest R-value for brain size, while Gorilla yields the highest for body size. The ancestral
branch of great apes indicates the shift in brain size and body size growth in this subfamily.
In terms of dwarfism, the highest values are indicated by the ancestral branch of tarsiers
(Tarsiidae), the ancestral branch of dwarf and mouse lemurs (Cheirogaleidae), the ancestral
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branch of marmosets and tamarins (Callithricinae), the ancestral branch of the lorises and
bushbabies (Lorisidae and Galagidae), followed by Miopithecus talapoin (the smallest Old
World monkey), the ancestral branch of owl monkeys (Aotidae), and the ancestral branch
of squirrel monkeys (Saimiriinae) (Fig. 9).

These results thus suggest that in terms of primate body size and brain size evolution,
IE is able to accurately reconstruct macro-evolutionary processes that occurred on ancestral
branches of extant subfamilies and families of primates. A good example is the human–
chimp ancestral point, for which only IE yields realistic estimates of brain size and body size
(Table 2).

Fig. 8. R-value distribution for body size (white bars) and brain size (black bars). On the x-axis, upper
and lower values represent the range of R-values presented.

Fig. 9. R-values for brain size and body size in primates.
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DISCUSSION

The main contribution of incorporating an adaptive peak model of evolution into
comparative research of quantitative characters lies in its applicability to different data sets
with different processes of evolution. Its main advantage is that it includes more specific
models of evolution such as BM and OU as special cases. The advantage of the IE
algorithm proposed to incorporate the assumptions of an AP model of evolution is that it
allows investigation of evolution on a branch-specific level, which in turn allows exploration
of directional trends and rates of changes within and between species and subfamilies
within and between traits. This may not only increase the accuracy of ancestral estimation
but may also be, in itself, of particular interest to many comparative researchers.

The theoretical development underlying IE is, however, yet to incorporate computing of
standard errors of estimates, and taking account of uncertainty of character mapping and
of the phylogeny. Moreover, IE is expected to be subject to the parametric limitations of
data sampling. Because the proposed procedure for estimating adaptive peak values cannot
be considered to be independent of the specific phylogeny that is used, it is expected that
larger samples will yield progressively more accurate results. A metric to estimate when the
sample is large enough for IE to be valid is currently unavailable (although preliminary
results indicate adaptive peak values reach an asymptote when 15–20 species are taken into
account). To explore this parametric limitation for the current analysis of primate body size,
the original data set of 105 was downsized to 59 by averaging all branches that diverged in
the last 3.5 million years. Results indicate that using the smaller sample still yields accurate
results for every accuracy measure discussed, and IE still significantly outperforms all
other methods.

Furthermore, because the value of the adaptive peaks is directly deduced from extant
variation, trends that are not apparent in the extant distribution cannot be estimated
without prior knowledge. Moreover, IE will estimate the character state at the root of the
tree within the range of the observed values in the data. Directional GLS models (Pagel, 1997,

1999) can overcome this limitation. If species that have diverged more from the root also tend
to have changed more in a given direction, then directional GLS models can use the trend to
reconstruct the character state at the root of the tree to lie outside of the range of observed
values. A precondition of this method is that tips differ in their distance from the root.
Many samples, however, consist of observed extant values only, in which case all values are
equidistant to the root.

Table 2. The human–chimp ancestral state for brain size and body size as estimated by different
methods

H.
sapiens

P.
troglodytes

A.
afarensis IE ML SCP IC UIC OU0.5 OU1 OU1.5 OU2

Brain size 1334 378 433 444 704 744 856 856 171 95 92 92
Male body

size
60200 38200 44600 43931 73310 68901 51450 51450 14188 8626 8478 8527

Female
body size

53600 33700 29300 35965 47250 46707 43650 43650 9896 5673 5548 5581

Note: Brain size estimates are computed with data from Kaplan et al. (2003), body size estimates are computed with
data from Smith and Cheverud (2002). Data on Homo sapiens, Pan troglodytes, and Australopithecus afarensis come
from Aiello and Dunbar (1993), Bauchot and Stephan (1969), Fleagle (1999), and Smith and Cheverud (2002).
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There is reason to question the general applicability of any one method to any data set.
Schultz et al. (1996) showed that more rapidly evolving characters are estimated with less
accuracy, and Schluter et al. (1997) confirmed the dependence of accuracy on rates by using
maximum likelihood approaches. Similarly, Alroy (1998, 2000) suggested that the evolutionary
dynamics of rapid changing traits may well be beyond the scope of any of the models
considered, since evolutionary trends will be more likely and more abundant. Other studies
have also indicated the serious effect of such evolutionary trends (Garland et al., 1999; Oakley and

Cunningham, 2000; Webster and Purvis, 2002a). Although the current analysis suggests preliminarily
that IE accommodates effects of selection on trait evolution in a more straightforward and
accurate way than established methods, some trends (e.g. strong overall directional trends)
are not apparent in extant species and thus cannot be estimated based only on extant data.
A possible solution here may be to incorporate known fossil values into the estimation
process (e.g. Oakley and Cunningham, 2000; Finarelli and Flynn, 2006).

Overall, our results suggest that using an adaptive peak model of evolution that includes
both BM and OU processes of evolution as special cases significantly improves accuracy
when reconstructing macro-evolutionary patterns in a primate phylogeny.
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