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In a recent contribution, Griffin & Yapuncich (2016) (‘G&Y’) report on purported inaccuracies and lack of theo-
retical underpinnings of our recently proposed ancestral estimation procedure. Our method is designed to provide 
a good overall fit with the data when different branches may be subject to different rates of change (multiple vari-
ance Brownian motion, or ‘mvBM’). Here we demonstrate that G&Y’s theoretical concerns stem from a misinformed 
account of basic statistical concepts and procedures, a misinterpretation of the primary literature and a circular 
adherence to a restrictive model of evolution (standard Brownian motion, or ‘standard BM’) whose usefulness has 
long been considered inappropriate for modelling branch-specific evolutionary patterns. We further apply a series of 
simple tests that falsify G&Y’s claims on every account. Finally, we show that including a range of sample sizes (from 
4 through 100) to G&Y’s own suggested simulation procedure further substantiates what they purport to falsify: the 
validity of mvBM when modelling potential deviations from standard BM in trait evolution.
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BACKGROUND

In the last 30 years, phylogenetic comparative methods 
have come to dominate the field of comparative biol-
ogy. These methods combine a phylogeny with observed 
data points in order to explore a range of different ques-
tions regarding to the evolution of traits. Throughout 
this period of methodological development, the type 
of methods being proposed has diversified to accom-
modate different types of questions. Initially, the focus 
was on estimating co-evolution of traits by accounting 
for phylogenetic covariance (Felsenstein, 1985; Grafen, 
1989). Gradually, methods have expanded towards try-
ing to answer more explicitly evolutionary questions: 
What is the rate of evolution in particular traits? Are 
rates of evolution similar across different lineages? 
Can shifts in trait values be observed? If so, where and 
when in phylogenetic space did such shifts occur?

As questions have become more specific, the evo-
lutionary models that support these methods have 
become more complex. Whereas the initial focus was 
on the standard Brownian motion (‘BM’) model, most 
researchers recognized that despite its advantages for 
hypothesis testing, its assumptions are unrealistic for 
the purposes of explicitly modelling evolutionary pat-
terns. This notion was aptly summarized by Harvey 
& Purvis (1991): ‘no evolutionary biologist actually 
believes that Brownian motion provides a realistic 
model of evolution’ (p. 623).

In search of more realistic models than the standard 
BM model, some have proposed to relax the constant 
variance assumptions of standard BM so as to allow 
for changes in the BM rate parameter (σ2) (O’Meara et 
al., 2006; Venditti, Meade & Pagel, 2011). Others have 
proposed the use of Ornstein-Uhlenbeck (‘OU’) models 
in order to increase the complexity of the standard BM 
model by adding parameters to the estimation procedure 
that reflect mean phenotype value and selection strength *Corresponding author. E-mail: jeroen.smaers@stonybrook.edu
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(Hansen, 1997). Butler & King (2004) subsequently put 
Hansen’s method into an information-theoretic frame-
work that allows for hypothesis testing among alterna-
tive evolutionary scenarios. Recently, the OU modelling 
framework has further expanded towards estimating 
shifts in trait values without a priori designation of selec-
tive regimes (Ingram & Mahler, 2013; Ho & Ané, 2014; 
Uyeda & Harmon, 2014; Khabbazian et al., 2016).

These methods are now the consensus approach in 
phylogenetic comparative biology. This does not mean, 
however, that these methods are infallible. Several 
authors have cautioned that despite the considerable 
power of these approaches (Cressler, Butler & King, 
2015), there remains uncertainty over the fundamen-
tal assumptions they make about the evolutionary 
process (e.g. Pennell et al., 2015; Pyron, 2015). Because 
all these comparative methods rely on specific models 
of evolution, it is crucial to assess the degree to which 
the parameters assumed by the model accurately esti-
mate patterns of evolutionary change and whether the 
actual patterns of change are expected to align with 
the assumptions of the model. Accordingly, several 
authors have highlighted incompatibilities between 
model parameters and the evolutionary concepts they 
purport to represent (Pennell & Harmon, 2013) and 
inherent limitations in both BM and OU models to 
accurately reflect evolutionary trait changes (Harmon 
et al., 2010; Pennell et al., 2015). This has led some to 
conclude that ‘In general, available models such as BM 
and OU appear to be relatively inadequate and (reveal) 
poor absolute fits to real clades when examined from 
an empirical perspective’ (Pyron, 2015: 386).

In this light, several authors have reiterated the  
usefulness of more flexible models of evolution that 
account for the possibility of rate-heterogeneity (e.g. 
most recently Chira & Thomas, 2016). It is also in this 
context that Smaers, Mongle & Kandler (2016) proposed 
an exploratory method of ancestral estimation that 
accounts for different rates of change along individual 
lineages. The aim of this method is to adequately capture 
deviations from standard BM in trait evolution when the  
evolutionary assumptions include the occurrence of 
different rates along different branches of the tree. We 
emphasize here the importance of appropriately contex-
tualizing the different contributions of different methods 
within the expanding toolbox of phylogenetic compara-
tive methods. Ignoring such context may lead to misrep-
resentation and misinterpretation of methods, which, as 
we demonstrate, is the case for G&Y’s criticism on mvBM.

The mvBM method proposed by Smaers et al. (2016) 
consists of two separate steps. A first step rescales the 
branches of the phylogeny according to estimates of lin-
eage-specific trait changes, while a second step parame-
terizes this rescaled tree using standard BM. The mvBM 
procedure is thus a two-step procedure (for a step-by-step 
description of the algorithm, see Smaers et al., 2016). 

The first step serves to change the weight with which 
particular tips and branches contribute to node estima-
tion. Because branch length and trait variance in the 
possible outcomes of trait evolution have a linear rela-
tionship in a BM model (Felsenstein, 1973), the first step 
provides an appropriate springboard to parameterize in 
a second step a BM model that includes different esti-
mated rates for different lineages (i.e. a multiple vari-
ance BM model, or ‘mvBM’). In mvBM, this adjustment 
of lineage-specific rates is accomplished by correcting 
for the baseline assumption that phylogenetic related-
ness is an accurate proxy of trait change over time. This 
correction is achieved by leveraging a global estimate of 
nodal values with a local estimate. The global estimation 
assumes that all trait change can be accurately proxied 
by phylogenetic distance. This assumption is equivalent 
to the assumption that trait change is proportional to 
(the square root of) time which directly results from 
assuming a standard BM model. The local estimate 
assumes that components other than phylogenetic relat-
edness may influence trait change and that the effect of 
such local components is best approximated by observed 
trait changes in closely related lineages. The procedure 
to leverage global with local components hereby intro-
duces a correction factor that estimates the extent to 
which branch-specific patterns of trait change deviate 
from a baseline BM assumption.

The mvBM procedure deviates from traditional 
phylogenetic comparative approaches in that it does 
not derive an algorithm from a statistical model, but 
rather comprises a heuristic algorithm that is based 
on the reasonable idea that both global and local fac-
tors influence trait diversity. The first step thus com-
prises a heuristic algorithm that rescales the branches 
of the phylogeny according to estimated trait change. 
The second step parameterizes this rescaled tree in a 
formal BM framework. Smaers et al. (2016) validated 
this approach in a simulation, the results of which 
confirmed the validity of mvBM by demonstrating 
that mvBM produces results equivalent to BM under 
BM conditions and outperforms BM when bursts are 
incorporated by identifying the location of the burst 
and reducing estimation error at this location.

The criticisms by G&Y on this method are based on 
several misreadings of the original work. First, G&Y criti-
cize mvBM as inappropriate for confirmatory hypothesis 
testing purposes. The original work, however, explicitly 
states that mvBM is an ancestral estimation procedure 
that is suitable for exploring evolutionary hypotheses, 
not for testing them. The original work argues that such 
data explorations have become a crucial step in most 
research designs concerned with inferring evolutionary 
patterns based on a phylogeny and observed data, as 
evidenced in the widespread use of exploratory visuali-
zation techniques such as phylomorphospaces and phe-
nograms. Second, G&Y criticize the fact that mvBM is 
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not based on a statistical model. It should, however, be 
clear that there is no intrinsic need for ancestral estima-
tion algorithms to be derived from a statistical model. 
Any model (statistical or not) is a proxy of how evolution 
is assumed to work. From this perspective, all models 
are wrong and one can certainly dispute the validity of 
any model. The much more crucial question, ignored by 
G&Y, is whether an approach validly describes what 
it is proposed to describe. Third, G&Y do not acknowl-
edge that the central aim of the mvBM procedure is to 
identify and accommodate regions in phylogenetic space 
where trait evolution deviates from standard BM when 
bursts are assumed to underpin trait diversification. 
Not recognizing this central feature leads G&Y to mis-
represent how mvBM is calculated and posit untenable 
claims as to how it should be evaluated (e.g. that it is 
inappropriate and uninformative to compare mvBM to 
standard BM under any circumstance).

Here we provide detailed comments on each of the 
criticisms put forth by G&Y. We find that G&Y’s claims 
are unfounded and based on a series of misconceptions 
about basic statistical concepts (iterativity vs. circu-
larity, exploratory v. confirmatory analyses, increased 
parameterization vs. overfitting, overall vs. relative 
goodness-of-fit), misrepresentations of the primary lit-
erature and ill-conceived simulations that actually sub-
stantiate what they purport to falsify. We demonstrate 
that a series of simple tests falsify G&Y’s claims on each 
account. Lastly, we performed a series of new simula-
tions that expand G&Y’s own suggested simulation pro-
cedure towards including a wider range of simulation 
conditions and sample sizes. These new simulations 
provide further evidence that mvBM is indeed a use-
ful approach when exploring trait evolution under the 
assumption that rates may be different across different 
branches of a phylogeny. Specifically, these new simula-
tions further substantiate that irrespective of sample 
size, mvBM produces results equivalent to standard 
BM when trait evolution is simulated under BM. These 
results are fundamental because they validate the 
mvBM procedure. Moreover, these new simulations 
further substantiate that mvBM’s accuracy advan-
tage over standard BM when bursts are incorporate 
in the simulation procedure is due to the identification 
and accommodation of bursts of change in the ances-
tral estimation procedure. These results demonstrate 
that mvBM does what it is proposed to do: identify and 
accommodate bursts of change in ancestral estimation.

TECHNICAL COMMENTS  
ON G&Y’S CRITICISM

PurPorted circularity

Circular reasoning can be defined as a logical fallacy 
in which a supposition and conclusion directly depend 

on one another. G&Y argue that the mvBM procedure 
is circular because, according to G&Y, the ‘starting and 
ending points of the algorithm are the same (i.e. esti-
mated trait values at internal nodes)’. In other words, 
G&Y argue that the circular nature of the procedure 
stems from mvBM’s assumption that branch-specific 
rates of change can be estimated by leveraging global 
and local information. By all accounts, the procedure 
to start with a baseline assumption and subsequently 
adjust estimates based on a more complex assumption 
is an iterative procedure, not a circular one. There is 
not a single set of steps in mvBM’s procedure whose 
starting points and ending points are the same. G&Y 
hereby confuse circularity with iterativity. That is 
not to say that mvBM is a fully iterative procedure. 
As described in Smaers et al. (2016) and also above, 
mvBM is a two-step procedure.

The statement that mvBM is circular also reveals a 
lack of understanding of the consequences of circular-
ity. If mvBM were indeed circular, it would not produce 
results equivalent to BM under BM conditions; rather, 
it would identify bursts where there are none and 
therefore produce more error than BM under BM con-
ditions. G&Y fail to recognize that mvBM is validated 
by the fact that mvBM produces results equivalent to 
BM under BM conditions, and further fail to recognize 
that this result demonstrates that there is no circular-
ity. This result was made clear in Smaers et al. (2016: 
fig. 3) and is further substantiated in an expanded set 
of simulations here (Figs 1a and 2a).

PurPorted overfitting and modelling  
of ‘random noise’

G&Y argue that mvBM overfits the data based on 
their observation that the mvBM procedure produces 
a higher absolute fit between the data and the tree 
than standard BM when a standard BM model under-
lies the simulations. According to G&Y, ‘the only way 
a model can fit data better than the generating model 
is by overfitting’. Unfortunately, this argument is 
based on misconceptions about the effect of increased 
parameterization. It should be obvious that a common 
consequence of statistical approaches that use nested 
models is that a more parameter-rich model has a 
higher likelihood (i.e. overall fit) than a simpler model 
with fewer parameters – even on data simulated under 
the simpler model. Furthermore, it should also be clear 
that a consequence of overparameterization is that 
data structure is identified where there is no struc-
ture. Applied to our approach, this would mean that 
mvBM would identify bursts where there are none. 
Again here, G&Y fail to understand the consequence 
of the fact that mvBM produces results equivalent to 
BM under BM conditions (Smaers et al., 2016: fig. 3, 
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and Figs 1a and 2a here). This validates the mvBM 
procedure by showing that it does not detect bursts 
where there are none, and provides evidence that the 
mvBM procedure does not overfit. It is correct that 
high parameterization may result in overfitting, but 
our simulations demonstrate that this is not the case 
for our approach because mvBM does not detect bursts 
where there are none and validly reduces the error at 
locations where there is indeed a burst.

 In this context, G&Y further claim that mvBM’s 
‘transformed phylogeny largely captures random 
noise’ and therefore that it ‘does not provide mean-
ingful insight about the data’. G&Y, however, again 
do not provide any test to back up their claim, nor do 
they explain how they define ‘random noise’, much less 
specify what is meant by ‘largely’. Moreover, this argu-
ment is again the result of G&Y’s failure to understand 
the consequence of the fact that mvBM produces results 

equivalent to BM under BM conditions, which nulli-
fies the argument that mvBM models random noise. 
If mvBM would indeed model random noise, it would 
detect bursts where there are none. As mentioned, both 
the original work by Smaers et al. (2016: fig. 3) and an 
expanded set of simulations provided here demonstrate 
that this is not the case (Figs 1a and 2a). It should thus 
be clear that these unsupported claims are untenable 
and constitute a misrepresentation of the original work.

Furthermore, a logical consideration of the nature 
of their claim that mvBM models random noise also 
reveals that it is untenable. The mvBM rescaled phy-
logeny successfully captures deviations from a base-
line BM assumption (as evidenced in the fact that 
mvBM produces equivalent results as standard BM 
when data is simulated according to BM and outper-
forms BM when bursts are included in the simulation 
procedure). Therefore, by suggesting that mvBM’s 

Figure 1. Results from simulations that expand G&Y’s own suggested simulation procedure (randomizing bursts across 
the tree) by including more than a single phylogeny and a single set of tips. A range of different simulation conditions were 
used (described in detail in the main text) across sample sizes ranging from 4 through 100. For each simulation condition, 
one thousand trees and data sets were simulated for sample sizes ranging from 4 to 100 (1000 simulations for a 4-tip phy-
logeny, 1000 simulations for a 5-tip phylogeny, …, 1000 simulations for a 100-tip phylogeny). For each simulation, ancestral 
estimates were calculated using standard BM, mvBM and PICs. We note that the use of PICs for the purpose of ancestral 
estimation is inappropriate. PIC is not a method of ancestral estimation and produces valid estimates for the root only 
under strict standard BM conditions only. We use PICs here only to demonstrate that (counter to what G&Y claim) mvBM’s 
accuracy advantage is not due to similarities with PICs. Results demonstrate that, expanding G&Y’s own simulation pro-
cedure to more appropriate conditions and sample sizes substantiates what they purport to falsify: mvBM successfully 
reduces estimation error when bursts of change are assumed to underpin trait diversification.
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rescaled phylogeny captures random noise, G&Y 
characterize deviations from BM as random noise. By 
defining noise as what is or is not captured by a model 
(in this case BM), the authors fall into the circular 
fallacy that meaningful evolutionary signal is meas-
ured by the model, and what the model measures is 
meaningful signal. It is ironic that G&Y falsely claim 
circularity by making circular arguments. Such circu-
lar argumentation reveals an inappropriate implicit 
adherence to a model of evolution (standard BM) that 
has long been considered as inappropriate for mod-
elling lineage-specific patterns of trait change (e.g. 
Harvey & Purvis, 1991).

PurPorted statistical non-interPretability

G&Y further claim that because the mvBM proce-
dure does not account for the number of parameters 
it assumes, it cannot be used for statistical inference. 
This argument confounds the fundamental difference 
between overall and relative goodness-of-fit and how 
these measures relate to exploratory estimation and 
confirmatory hypothesis testing. Overall fit measures 
the fit of the data to the model. Relative fit corrects the 
overall fit relative to the number of assumed param-
eters (e.g. the use of information criteria such as AIC). 

Measures of overall fit can be used to provide explora-
tory best-estimates of data structure. Measures of rela-
tive fit should be used in the context of confirmatory 
hypothesis testing. The crucial misconception by G&Y 
is that any ancestral estimation method that provides 
explicit estimates for all nodal values in a tree would 
be appropriate for confirmatory hypothesis testing. 
It should be self-evident that estimates of ancestral 
values are estimates, not observations, and therefore 
are not suitable for hypothesis testing. This does not, 
however, mean that these ancestral estimation meth-
ods are not useful. Such methods are clearly useful for 
the purposes of exploring a description of the data that 
comprises the highest possible fit between data and 
model (i.e. high overall fit).

In this context, G&Y also claim that the mvBM 
procedure does not represent a recognizable statis-
tical model. As mentioned, mvBM’s first step uses a 
heuristic algorithm that rescales the tree according to 
estimates of lineage-specific trait changes, while a sec-
ond step parameterizes this rescaled tree using stand-
ard BM. There is no intrinsic need for the first step to 
be derived from a statistical model. In fact, mvBM’s 
procedure is specifically designed to be different from 
traditional statistical models for reasons discussed at 
length in Smaers et al. (2016) and concisely reviewed 

Figure 2. Using the same simulations as presented in Figure 1, separate results on mean error per node are presented for 
the burst node, the burst nodes’ direct ancestor and other nodes. These results demonstrate that mvBM’s accuracy advan-
tage is due to improving the identification and accommodation of bursts of change in the ancestral estimation procedure.
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again here in the Background section. Importantly, by 
parameterizing mvBM’s rescaled tree with standard 
BM parameters in a second step, the eventual output 
of mvBM is undeniably a statistical model.

G&Y also argue that ‘mvBM represents a major 
departure from basic principles underlying mod-
ern PCMs (phylogenetic comparative methods)’. Our 
procedure is indeed intended to be a departure from 
current PCMs, but G&Y’s argument fails to acknowl-
edge that the idea about how evolution is expected 
to produce diversity that underlies mvBM is con-
sistent with that which underlies more traditional 
theoretical models of evolution. Specifically, the idea 
that both global and local components influence trait 
diversification is similar to the idea that underlies a 
phylogenetic mixed effects model and an OU model. 
Phylogenetic mixed effect models (Lynch, 1991; 
Housworth, Martins & Lynch, 2004) assume that 
evolutionary variation comprises both a phylogenetic 
component (‘heritable’ or ‘additive’ components) and a 
component specific to the nodes in question (‘residual’, 
or ‘nonheritable’ components). The OU model assumes 
that populations climb local adaptive peaks, effec-
tively assuming that local selective pressures direct 
trait space towards certain peaks (Hansen, 1997). It 
should be clear that the mvBM approach proposed by 
Smaers et al. (2016) is not a phylogenetic mixed effect 
model, nor an OU model, but it does share the central 
idea that trait evolution is affected by both global and 
local components.

PurPorted inaccuracy and bias

G&Y argue that mvBM contains ‘inaccuracies’ and 
‘bias’ in its ancestral estimates. They supported their 
argument with three simulations. Their first simula-
tion comprised a single 3-tip phylogeny comparing 
the accuracy of standard BM, mvBM and PIC (‘phylo-
genetic independent contrasts’). A second simulation 
used a single 100-tip phylogeny and considers only 
mvBM. A third simulation used a single 30-tip phylog-
eny and also considers only mvBM.

G&Y’s first simulation comprised a single 3-tip 
phylogeny and a burst of evolution along one branch. 
This simulation is purported to show that mvBM’s 
accuracy stems from similarities with PICs. Their 
simulation is problematic in a number of ways. First, 
G&Y misrepresent mvBM’s central aim of captur-
ing deviations from a global estimate (the calcula-
tion of PICs has some similarities with mvBM’s 
global estimates in this respect). Because mvBM’s 
global estimate reflects the standard BM assump-
tion that trait change is proportional to phylogenetic 
distance, the similarities between PICs and mvBM’s 
global estimate are expected because standardized 
PICs can and frequently are used to parameterize a 

constant-rate BM model. G&Y, however, do not rec-
ognize that in mvBM the global estimate must be 
adjusted using a local estimate before calculating 
rates in order to fulfil mvBM’s assumption that a con-
stant-rate BM may be wrong. The claim that mvBM’s 
global estimate is representative of its ancestral esti-
mates (and therefore representative of PIC ancestral 
estimates) is therefore false and constitutes a clear 
misrepresentation of the original work. To exemplify 
how mvBM ancestral estimation differs from PIC 
ancestral estimation, we provide a new set of simu-
lations that compare the accuracy of standard BM, 
PICs and mvBM across a wide range of samples (4 
through 100). These simulations unequivocally dem-
onstrate that PICs produce by far the least accurate 
ancestral estimations, even when data are simulated 
according to standard BM (Figs 1a–e; more details 
below). Furthermore, in designing their first simu-
lation, G&Y do not acknowledge that a PIC analy-
sis does not produce ancestral estimations because 
the contrasts have no natural ‘root’ that represents 
an ancestral condition. PIC is simply not a method 
of ancestral estimation. Rather, PIC is a method for 
removing redundancies due to shared ancestry for 
the purposes of trait correlation analysis or rate 
analysis. The only value that can be considered to 
be correctly estimated using PICs is the root value, 
which is equal to the estimate found under a stand-
ard constant-rate BM model. No other PIC ancestral 
estimate besides the root can be considered to be a 
correct estimate under a standard constant-rate BM 
model. Our simulations exemplify this property by 
demonstrating that PIC ancestral estimates indi-
cate more error than BM under BM conditions (thus 
invalidating their use). It is, of course, possible to 
repeatedly reroot the tree to obtain proper estimates 
of each of the nodes using PIC algorithms (Garland 
& Ives, 2000), but this produces the same results as 
the generalized least-squares (‘GLS’) procedure. The 
GLS procedure is preferred over repeatedly reroot-
ing the tree because GLS allows for a wider applica-
tion (Smaers & Rohlf, 2016). Also, the notion that a 
3-tip phylogeny provides comprehensive information 
about the accuracy of a multirate method is unrea-
sonable. In order to reliably estimate parameters, all 
models require enough information. A 3-tip phylog-
eny clearly does not provide this. Finally, and most 
paradoxically, G&Y’s results in this narrow simula-
tion procedure actually substantiate what they pur-
port to falsify: mvBM’s accuracy relative to standard 
BM.

In a second simulation, G&Y used a single 100-tip 
phylogeny and vary the location of the burst branch 
across all branches 1000 times. G&Y claim that this 
simulation exemplified mvBM’s ‘bias’ and ‘inaccuracy’. 
The ‘bias’ G&Y refer to relates to the observation that 
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‘reconstructions at the base of the burst branch are 
strongly biased in the direction of the burst, and the 
degree of bias depends on the size of the burst’. Again, 
G&Y do not test their claim that the degree of auto-
correlation prohibits accurate detection of trait shifts, 
but rather describes the error as ‘quite large’. G&Y do 
not acknowledge that Smaers et al. (2016: 88) accu-
rately reported that, per construction, mvBM exhibits 
a certain degree of autocorrelation. Moreover, Smaers 
et al. (2016) provide clear results indicating that the 
degree of autocorrelation is in fact not prohibitive of 
accurately detecting bursts. G&Y’s further assessment 
that mvBM error is ‘quite large’ is based only on the 
observation that mvBM’s estimates do in fact show 
error. G&Y do not make any comparison with any 
other method, nor with a baseline expectation in order 
to assess whether mvBM in fact shows less error than 
other methods and is therefore more useful. The claim 
that statistical estimation is wrong because it contains 
error is naive at best. It should be self-evident that any 
ancestral estimation method produces error. The much 
more important question ignored by G&Y is whether 
or not the amount of error in mvBM’s estimates ren-
ders it a useful approach. Smaers et al. (2016) provide 
ample evidence that mvBM is, in fact, useful. These 
results are further substantiated here in a comprehen-
sive set of simulations presented in Figs 1–2.

In a third simulation, G&Y used a single 30-tip 
phylogeny to demonstrate that the R2 values (from a 
regression of estimated to observed ancestral values 
drawn from a series of simulations) reported in Smaers 
et al. (2016) are inflated. G&Y used a different proce-
dure for simulating bursts across the tree (randomly 
across all branches) than the one used by Smaers et 
al. (2016) (who used fixed locations). Following the dif-
ferent simulation procedure, G&Y found a different R2 
value than the one reported by Smaers et al. (2016) 
[one that is lower: median of 0.81 while a mean of 
~0.97 was reported in Smaers et al. (2016)]. G&Y used 
their result to argue that this constitutes evidence of 
mvBM’s ‘inaccuracy’. G&Y here do not seem to real-
ize that changing the procedure of any simulation will 
lead to different results for any method. Although this 
is of course self-evident, it is nonsensical to use this 
attribute to claim that mvBM is ‘inaccurate’. G&Y fur-
ther do not acknowledge that Smaers et al. (2016) did 
not claim that the reported R2 values apply to all possi-
ble simulation conditions. Rather, Smaers et al. (2016) 
argue that mvBM’s reported R2 values are higher than 
those observed for standard BM when bursts are sim-
ulated and equivalent to standard BM when simula-
tions are according to BM, something which G&Y do 
not test. G&Y’s argumentation for systematic inac-
curacy based on the observation that different results 
are found when using different simulation procedures 
is nonsensical.

PurPorted non-informative nature  
of the comParison between  

mvbm and standard bm

Likely because G&Y do not acknowledge that mvBM’s 
central aim is to identify and accommodate deviations 
from standard BM, they make the untenable claim 
that it is inappropriate to compare mvBM’s accuracy 
to that of standard BM. G&Y make the correct state-
ment that standard BM is appropriate under condi-
tions that do not violate its assumptions, but that 
BM is inappropriate when its assumptions are vio-
lated. G&Y, however, go on to argue that this renders 
standard BM invalid as a baseline comparison to test 
whether mvBM does what it is proposed to do. G&Y 
thereby do not acknowledge that the central feature of 
mvBM is to identify where in the phylogeny standard 
BM does not fit when bursts do occur and to provide 
an accommodation of such instances when estimat-
ing ancestral values. In comparing mvBM to stand-
ard BM results, Smaers et al. (2016) do not set out to 
show that standard BM is not a good method, nor that 
it does not produce good estimates when its assump-
tions are violated. Rather, Smaers et al. (2016) set out 
to demonstrate that mvBM produces ancestral esti-
mates equivalent to standard BM when trait change 
occurs according to BM, and produces more accurate 
results than standard BM at those phylogenetic loca-
tions where bursts occur and standard BM does not 
fit the model assumptions. Testing these proposals is 
crucial, because if mvBM would not produce equiva-
lent results as standard BM when data are simulated 
under standard BM, and not outperform standard BM 
when it is not, then mvBM would indeed model noise 
and therefore not provide insightful information about 
the data. But it does do what it is proposed to do, so 
it does not model noise, and it does provide insight-
ful information about the data. The notion that it is 
non-informative and inappropriate to test that mvBM 
performs as it is proposed to perform is absurd.

VERIFIABLY FALSE AND MISLEADING 
STATEMENTS BY G&Y

One of G&Y’s central claims is that Smaers et al. 
(2016) only report ‘aggregated results across the entire 
tree’ in order to hide purported bias and inaccuracy 
in mvBM’s estimates. However, G&Y do not acknowl-
edge Table 2 in Smaers et al. (2016: 86) in which sepa-
rate accuracy measures are reported for all nodes, for 
the burst node, for nodes closely related to the burst 
node, for nodes distantly related to the burst node and 
for the root. These results clearly show that mvBM’s 
accuracy advantage relative to BM is highest around 
the burst node. Moreover, these results demonstrate 
that mvBM’s accuracy advantage for the burst node 
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increases with the size of the burst and with the num-
ber of simulated bursts. These results clearly falsify 
G&Y's claims of inaccuracy and bias. Using the pur-
ported absence of Table 2 to fuel false suggestions of 
inaccuracy and bias is misleading. In an expanded 
set of new simulations, here we again provide node-
specific results that again confirm that mvBM’s accu-
racy advantage is due to improved identification and 
accommodation of bursts of change when estimating 
ancestral values (Figs 2b–e; details below).

G&Y further claim that ‘Smaers et al. suggest their 
method relates to existing statistical models of evo-
lution, particularly the multiple-rate BM model of 
Venditti et al.’. Such a suggestion was never made. 
The similarities and differences with Venditti et al.’s 
approach are more nuanced than G&Y imply. The 
underlying idea about how evolution is expected to 
produce trait diversity (i.e. deviations from constant-
rate BM) is indeed similar between these approaches. 
However, the manner in which these ideas are formal-
ized is very different (through a heuristic algorithm in 
mvBM vs. by deriving an algorithm from a statistical 
model by Venditti et al.). Lastly, both approaches con-
stitute two procedural steps. A first step rescales the 
phylogeny, and a second parameterizes the rescaled 
phylogeny using a standard BM. G&Y’s claim thus con-
founds the fundamental difference between a method’s 
underlying idea, its formalization and its procedure.

G&Y also often refer to a previous contribution of 
theirs (Griffin & Yapuncich, 2015) in which they make 
very similar statements as reported in their current 
criticism, but related to a previous method proposed by 
Smaers (Smaers & Vinicius, 2009). However, the same 
theoretical misconceptions and fallacies reported here 
underlie their previous criticism. Using these argu-
ments to back up their criticism of Smaers et al. (2016) 
is therefore misleading.

exPanding g&y’s own simulation  
Procedure substantiates mvbm’s validity

G&Y claimed that the simulation conditions reported 
in Smaers et al. (2016) were favourable to mvBM. Here 
we extend G&Y’s own suggested simulation procedure 
(i.e. randomly varying bursts across the tree) towards 
including more than a single phylogeny and a single 
sample size. Specifically, we simulated 1000 trees and 
data sets for phylogenies with a number of tips ranging 
from 4 to 100 (1000 simulations for a 4-tip phylogeny, 
1000 simulations for a 5-tip phylogeny, …, 1000 simu-
lations for a 100-tip phylogeny). As suggested by G&Y, 
bursts were assigned randomly across all branches of 
the tree. To explore mvBM’s accuracy relative to the 
number of bursts, we ran separate simulations using a 
different set number of bursts (1 or 3 burst branches, 

Figs 1b–e, 2b–e). To explore the effect of the size of the 
burst, we further ran separate simulations in which 
bursts were defined as a factor increase (either 10 or 
30, Figs 1b–e, 2b–e) relative to a baseline rate of 0.01.

Results indicate that irrespective of sample size, 
mvBM produces equivalent results to standard BM 
when data are simulated according to standard BM 
[Figs 1a and 2a, see also Fig. 3 in Smaers et al. (2016)]. 
When bursts of change are assumed to underpin trait 
diversification, results confirm that mvBM’s accuracy 
advantage relative to standard BM is irrespective of 
sample size and increases with the number of bursts 
and the strength of the bursts (Figs 1b–e). When sepa-
rating the mean error per node for the burst nodes, the 
burst nodes’ direct ancestor, and other nodes, results 
demonstrate that mvBM’s accuracy advantage over 
standard BM is due to the identification and accommo-
dation of bursts of change in the ancestral estimation 
procedure (Fig. 2b–e). It is evident that for both mvBM 
and standard BM, the mean error at the burst node 
and its direct ancestor are larger than in other nodes. 
This demonstrates that bursts indeed echo error down 
the tree to a certain extent [as accurately reported in 
Smaers et al. (2016)]. However, and most crucially, for 
both the burst node and its direct ancestor, mvBM’s 
mean error is significantly reduced. This demonstrates 
that mvBM successfully reduces the error caused by 
bursts of change. Moreover, these results also dem-
onstrate that mvBM successfully reduces the bursts’ 
echoing effect down the tree. In other words, results 
unequivocally demonstrate that mvBM does precisely 
what it is proposed to do: identify and accommodate 
bursts of change in ancestral estimation.

These results provide further confirmation of the 
accuracy advantage of mvBM relative to standard 
BM and affirm its validity and usefulness when mod-
elling lineage-specific patterns of change under the 
assumption that trait diversification may comprise 
different rates of evolution in different lineages. 
Results also demonstrate that including a range of 
different sample sizes (from 4 through 100) in G&Y’s 
own suggested simulation procedure (randomizing 
bursts across the phylogeny) substantiates what they 
purport to falsify.

CONCLUSION AND DISCUSSION

We conclude that G&Y’s criticism is based on a series 
of unsupported claims that are based on fundamen-
tal misconceptions about circularity and overparam-
eterization. G&Y misrepresent the original work by 
not recognizing several crucial features of the method 
that they criticize (e.g. rates are calculated only after 
adjusting a global estimate with a local estimate) and 
providing a series of misleading simulations that, 
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when expanded to a more reasonable range of sample 
sizes, actually support what they claim to falsify.

The only valid discussion point that could be drawn 
from G&Y’s criticism relates to whether a statistical or 
a nonstatistical model is expected to better represent 
how evolution works. Although G&Y do not recognize 
that this discussion underlies their argumentation, 
G&Y clearly favour statistical models in this regard. 
This is not, however, a criticism of mvBM per se. It 
should be clear that any model (statistical or not) is 
a proxy of how evolution is assumed to work, and one 
can certainly have many philosophical discussions 
about what is the best assumption. But one should not 
confound philosophical assumptions with empirical 
validity. On this account, it is unequivocal that mvBM 
is an empirically valid procedure because, irrespective 
of sample size, it successfully identifies and accommo-
dates bursts of change under assumptions of multirate 
trait diversification and produces equivalent results to 
standard BM under assumptions of constant rate trait 
diversification.

Another discussion point that G&Y touch upon, but 
only tangentially, is sample size. Unfortunately, also 
here their argument is untenable. G&Y suggest that 
mvBM's accuracy is lower with lower sample size and 
go on to suggest that the original work by Smaers 
et al. (2016) used a large tree in order to ‘dilute the 
effect of the burst’. This serious accusation is, however, 
unfounded. The untenable nature of this accusation 
would have been apparent if only G&Y had done the 
appropriate tests to back it up. Our expanded set of 
simulations (which are no more than an expansion of 
G&Y’s own suggested simulation procedure) explores 
the effect of sample size on mvBM estimation and the 
‘effect of the burst’. Results unequivocally demonstrate 
the validity of mvBM estimation irrespective of sam-
ple size (Fig. 2).

A further point of discussion that could be re-empha-
sized is mvBM’s potential application in a phylogenetic 
comparative research design. G&Y seem to argue that 
mvBM is not a blanket solution and therefore must 
be wrong. It should be self-evident that any ancestral 
estimation procedure is not a blanket solution for all 
that is phylogenetic comparative methodology. But 
that does not imply that mvBM does not have use in 
contributing information about trait evolution. By pro-
viding results equivalent to BM under BM conditions 
and outperforming BM when bursts occur by reducing 
error at the location of the burst, the mvBM procedure 
is useful in that it provides a better estimate of trait 
evolution. For example, despite the common acknowl-
edgement that BM is not up to the task when different 
lineages indicate different rates of evolution, pheno-
grams and phylomorphospaces continue to be used in 
conjunction with constant-rate BM ancestral estima-
tion. mvBM here provides an alternative that better 

identifies and accommodates bursts of change in trait 
evolution. mvBM can thus validly be used when the 
aim is to provide best-estimates of trait evolution. 
However, as with any other ancestral estimation 
approach, mvBM should be combined with other meth-
ods that are appropriate for hypothesis testing when-
ever the data allow. As mentioned in the Background 
section, several such methods are widely available 
(O’Meara et al., 2006; Khabbazian et al., 2016). We also 
hope that future work will continue to improve upon 
ancestral estimation procedures in order to further 
reduce estimation error and better accommodate for a 
wide range of possible patterns of trait diversification.
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